Mathematics of Closed-End Air Columns Lesson Notes

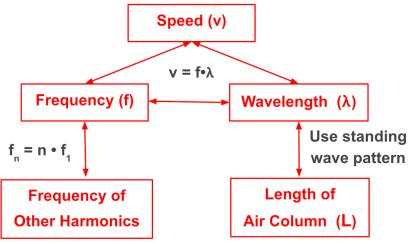
Learning Outcomes

- What are the formulas one needs to solve a problem involving an closed-end air column?
- How does one solve an closed -end air column problem?

Closed-End Air Columns – Math Relationships

Know: wave patterns, relationships, and formulas Have a strategy!

Harmonic	Pattern	# of Nodes	# of Antinodes	λ	f	Examples	
						λ (m)	f (Hz)
1 st		1	1	λ1	f ₁	2.40	150
3 rd		2	2	λ1/3	3∙ f₁	0.80	300
5 th		3	3	λ1/5	5• f ₁	0.48	450
7 th		4	4	λ1/7	7• f ₁	0.343	600
9 th		5	5	λ1/9	9• f ₁	0.267	750
n th		(n+1)/2	(n+1)/2	λ ₁ /n	n∙ f₁	2.40/n	150•n


For a closed-end air column of length L:

$$\lambda_n = \lambda_1 / n$$
$$f_n = n \cdot f_1$$

 $\lambda = (4/n) \cdot L$

n = harmonic #

An Effective Strategy

Follow through the video and provide worked-out solutions to the following problems:

Example 1: Solving for fn from f1

A closed-end air column has a 1st harmonic of 125 Hz. What is the frequency of the next three harmonics?

Example 2: Solving for f₁ from f_n

A closed-end column has a frequency of 360 Hz and vibrating as shown. What is the frequency of the 1st harmonic?

Example 3: Solving for λ or L from v and f

A closed-end air column resonates with its seventh harmonic frequency of 882 Hz. The speed sound is 344 m/s. Determine the length of the air column.

Example 4: Solving for f1 or fn from v and L

Determine the first three harmonic frequencies of a 62.0-cm closed-end air column. The speed of sound is 340 m/s.

Example 5: Solving for v from f and L

A 72-cm long closed-end air column resonates with its fifth harmonic at a frequency of 590 Hz. Determine the speed of sound in the air column.

Other Variations

Depending on your course (level, organization of topics, etc.), open-end air column problems can have several variations from the examples.

For sound waves in air: **v = 331 m/s + (0.6m/s/°)·T** (**T** = temperature in °C)