Closed-End Air Columns Lesson Notes

Learning Outcomes

- How do you draw the standing wave patterns for the various harmonics of a closed-end air column?
- How are the frequencies and wavelengths for the various harmonics related?

Open-End vs. Closed-End Air Columns

- Open-End Air Columns: both ends are open to the surrounding air.
- Closed-End Air Columns: one end is open and one end is closed.
- Open ends are **anti-nodes** (AN); air vibrates in and out of the air column.
- Closed ends are **nodes** (N); air does not vibrate at the closed end.

Standing Wave Patterns for Closed-End Air Columns

There are several natural frequencies or **harmonics** that will force the closed-end air column to resonate as a standing wave:

Frequency Relationships for Closed-End Air Columns

There are very clear wavelength and frequency relationships between the harmonics of an closed-end air column.

 7^{th} Harmonic: one-seventh the λ of 1^{st} Harmonic ... and seven times the **f**.

If the fundamental frequency is 200 Hz, then ...

 $f_1 = 200 \text{ Hz}$ $f_3 = 600 \text{ Hz}$ $f_5 = 1000 \text{ Hz}$ $f_7 = 1400 \text{ Hz}$

Mathematics of Closed-End Air Columns

Two general equations for n^{th} harmonic: $\lambda_n = (4/n) \cdot L$

 $\mathbf{f}_n = \mathbf{n} \cdot \mathbf{f}_1$

l on

ume

Harmonic	Pattern	# of Nodes	# of Antinodes	λ	f	Exan λ (m)	nples 🛒 f (Hz)	Ba
1 st		1	1	λ1	f ₁	2.40	150	L =
3 rd		2	2	λ1/3	3• f ₁	0.80	300	
5 th		3	3	λ1/5	5• f ₁	0.48	450	¢.
7 th		4	4	λ1/7	7• f ₁	0.343	600	
9 th		5	5	λ1/9	9• f ₁	0.267	750	
n th		(n+1)/2	(n+1)/2	λ ₁ /n	n• f ₁	2.40/n	150•n	