Charging by Induction

Read from Lesson 2 of the Static Electricity chapter at The Physics Classroom:

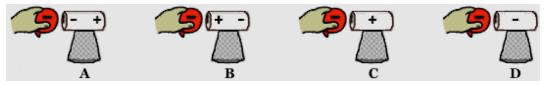
http://www.physicsclassroom.com/Class/estatics/u812c.html

MOP Connection: Static Electricity: sublevels 5, 6, and 7

Review:

1. Fill in the following blanks with the words **electrons** or **protons**.

are negatively ch	narged and	are
positively charged. The	reside in the nucl	eus of atoms and are
tightly bound; they will never leave an	atom as a result of electro	static procedures.
On the other hand,		
easily removed from or added to atoms.	. As an object begins to g	ain or lose
from its atoms, it	t becomes positively or ne	egatively charged. A
negatively charged object has more	than	
A positively charged object has more	than _	


Consider the following process:

An uncharged metal pop can is attached to a Styrofoam cup (which acts as an insulating stand). A negatively charged balloon is brought near the pop can. While the balloon is held near, the can is touched. When the can is pulled away, the pop can is charged.

- 2. This process is known as _____
 - a. charging by conduction
 - c. polarization

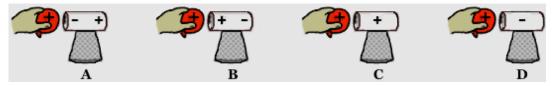
- b. charging by induction
- d. grounding
- 3. When the balloon is held near to the pop can (and before being touched by the hand), the distribution of charge on the pop can is best depicted by diagram _____.

- 4. When the pop can is touched by the hand, _____ move from the _____ to the _____
 - a. protons, hand, can
 - c. electrons, hand, can

- b. protons, can, hand
- d. electrons, can, hand
- 5. This process causes the can to acquire a ____ charge.
 - a. negative
- b. positive
- c. neutral
- 6. When the induction charging process is complete, the balloon is ____
 - a. positively charged

- b. electrically neutral
- c. still negatively charged, only having fewer excess electrons as before the process began
- d. still negatively charged, having the same amount of negative charge as it previously had
- 7. In general, the use of a negatively charged object to charge another object by induction causes the other object to acquire a _____ charge.
 - a. positíve

b. negative


Static Electricity

Now consider a similar process:

An uncharged metal pop can is attached to a Styrofoam cup (which acts as an insulating stand). A positively charged balloon is brought near the pop can. While the balloon is held near, the can is touched. When the can is pulled away, the pop can is charged.

8. When the balloon is held near to the pop can (and before being touched by the hand), the distribution of charge on the pop can is best depicted by diagram _____.

- 9. When the pop can is touched by the hand, _____ move from the _____ to the _____
 - a. protons, hand, can
 - c. electrons, hand, can

- b. protons, can, hand
- d. electrons, can, hand
- 10. This process causes the can to acquire a ____ charge.
 - a. negative
- b. positive
- c. neutral

In the above induction charging processes, there are two basic steps: a **polarization step** and a **charging step**. In the charging step, the hand serves as a **ground** - an object that serves as a seemingly infinite source of or sink for electrons. During the charging step, electrons move into or out of the ground (hand) in order to charge the pop can. Another means of charging the pop can involves the use of another conducting object. For instance, another pop can could be used. The diagrams below depict the induction charging process using a second pop can in place of the hand.

11. In terms of electron movement, explain what is happening in Diagrams B and C above. Finally, state the charge acquired by the left and the right can as a result of this process.