\qquad

Newton's Second Law Problem-Solving

Study from Lessons 3 of the Newton's Laws chapter at The Physics Classroom:

> http://www.physicsclassroom.com/Class/newtlaws/u2l3c.html http://www.physicsclassroom.com/Class/newtlaws/u2l3d.html

For the following problems, construct a free-body diagram and show your work clearly.

1. A rightward force of 302 N is applied to a $28.6-\mathrm{kg}$ crate to accelerate it across the floor. The coefficient of friction between the crate and the floor is 0.750 . Determine the acceleration of the crate.
2. During a football workout, two linemen are pushing the coach on the sled. The combined mass of the sled and the coach is $300 . \mathrm{kg}$. The coefficient of friction between the sled and the grass is 0.800 . The sled accelerates at a rate of $0.580 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. Determine the force applied to the sled by the lineman.
3. A 405-N rightward force is use to drag a large box across the floor with a constant velocity of 0.678 m / s. The coefficient of friction between the box and the floor is 0.795 . Determine the mass of the box.
4. A $6.58 \times 10^{3} \mathrm{~N}$ upward tension force is exerted on a 521-kg downward-moving freight elevator. Determine the acceleration of the elevator.

Newton's Laws

5. A basketball star exerts a force of 3225 N (average value) upon the gym floor in order to accelerate his 76.5-kg body upward. (a) Determine the acceleration of the player. (b) Determine the final speed of the player if the force endures for a time of 0.150 seconds.
6. At the end of the Giant Drop free fall ride, riders experience a large upward normal force to bring their falling bodies to a stop. Determine the normal force value required to accelerate a $52.1-\mathrm{kg}$ physics student with an upward acceleration of $27.4 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
7. A hockey player accelerates a puck $(\mathrm{m}=0.167 \mathrm{~kg})$ from rest to a velocity of $50.0 \mathrm{~m} / \mathrm{s}$ in 0.121 sec . Determine the acceleration of the puck and the force applied by the hockey stick to the puck. Neglect resistance forces.
8. A falling skydiver is accelerating in the downward direction at $3.29 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. The mass of the skydiver (including parachute gear) is 67.2 kg . Determine the air resistance force on the skydiver (and accompanying parachute).
9. A $67.2-\mathrm{kg}$ falling skydiver opens his parachute and instantly slows down at a rate of $7.20 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. Determine the air resistance force on the skydiver (and accompanying parachute).
