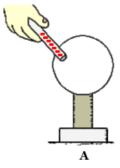
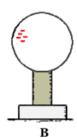
Charging by Conduction and Grounding

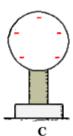
Read from Lesson 2 of the Static Electricity chapter at The Physics Classroom:

http://www.physicsclassroom.com/Class/estatics/u8l2b.html http://www.physicsclassroom.com/Class/estatics/u8l2d.html

MOP Connection: Static Electricity: sublevel 4

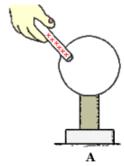

Review:

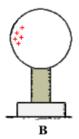

1. Fill in the following blanks with the word **electrons** or **protons**.

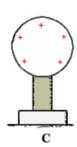

_____ are negatively charged and _____ are positively charged. The _____ reside in the nucleus of atoms and are tightly bound; they will never leave an atom as a result of electrostatic procedures. On the other hand, _____ are located outside the nucleus and are easily removed from or added to atoms. As an object begins to gain or lose _____ from its atoms, it becomes positively or negatively charged. A negatively charged object has more _____ than _____. A positively charged object has more _____ than _____.

- 2. A metal sphere is resting upon an insulating stand. A teacher holds a metal bar (with an insulating handle). The teacher uses the metal bar to charge the metal sphere by **conduction**. Which one of the processes describes what the teacher likely did to charge the sphere by conduction?
 - a. The teacher rubbed the bar and the sphere together.
 - b. The teacher held the bar near the sphere and then touched the sphere with her hand.
 - c. The teacher charged the bar and then contacted it to the sphere.

Consider the conduction charging process described below:

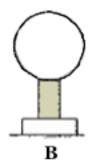


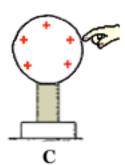

- A: A teacher holds a negatively charged metal bar by its insulating handle and touches it to a metal sphere (attached to an insulating stand).
- B: The teacher pulls the metal bar away and the metal sphere acquires a charge.
- C: The excess negative charge spreads uniformly about the surface of the metal sphere.
- 3. Diagram A is the charging step. How does the sphere become charged?
 - a. Electrons move from the insulating stand into the sphere.
 - b. Electrons move from the charged metal bar into the sphere.
 - c. Protons move from the sphere into the negatively charged bar.
- 4. When the metal bar is pulled away in Diagram B, the metal bar is _____
 - a. positively charged

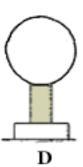

- b. electrically neutral
- c. still negatively charged, but has fewer excess electrons than it previously did.
- 5. Diagram C shows the excess negative charge distributed differently than it is in Diagram B. Explain why the excess negative charge would distribute itself as it does in Diagram C.

Static Electricity

Now consider the conduction charging of the sphere using a positively charged metal bar:




- A: A teacher holds a positively charged metal bar by its insulating handle and touches it to a metal sphere (attached to an insulating stand).
- B: The teacher pulls the metal bar away and the metal sphere acquires a charge.
- C: The excess positive charge is spread uniformly about the surface of the metal sphere.
- 6. Diagram A is the charging step. How does the sphere become charged?
 - a. Protons move from the insulating stand into the sphere.
 - b. Protons move from the charged metal bar into the sphere.
 - c. Electrons move from the sphere into the positively charged bar.
- 7. When the metal bar is pulled away in Diagram B, the metal bar is _____
 - a. negatively charged


- b. electrically neutral
- c. still positively charged, but has fewer excess protons than it previously did.

Two different processes are shown in the diagrams below:

- A: A negatively charged metal sphere is touched.
- B: The hand is pulled away and the sphere is then electrically neutral.
- A: A positively charged metal sphere is touched.
- B: The hand is pulled away and the sphere is then electrically neutral.
- 8. The process of neutralizing the charged spheres as depicted above is known as $\frac{1}{100}$
 - a. cĥarging
- b. polarization
- c. induction
- d. grounding
- 9. When the negatively charged sphere is touched, _____ move from the _____ to the ___
 - a. electrons, sphere, hand

b. electrons, hand, sphere

c. protons, sphere, hand

- d. protons, hand, sphere
- 10. When the positively charged sphere is touched, ____ move from the ____ to the ____
 - a. electrons, sphere, hand

b. electrons, hand, sphere

c. protons, sphere, hand

d. protons, hand, sphere