\qquad

Air Resistance and Terminal Velocity

Read from Lesson 3 of the Newton's Laws chapter at The Physics Classroom:

http://www.physicsclassroom.com/Class/newtlaws/u2l3e.html

MOP Connection: Newton's Laws: sublevel 11

1. When falling under the influence of air resistance and dropped from the same height, which will fall to the ground at a faster rate?
a. a mouse
b. an elephant
c. the same
2. Which of the following variables will have a direct effect upon the amount of air resistance experienced by an object? (That is, for which of these quantities will an increase lead to a resulting increase in the air resistance force?)

a. speed
b. air density
c. cross-sectional area
3. Consider the dragster's motion below. Speedometer readings and the forward propulsion force (Fapp) are shown. The top (or terminal) speed is 120 mph . Draw $\mathrm{F}_{\text {air }}$ force arrows on each diagram to illustrate how the amount of air resistance changes during the course of its motion.

4. Draw $\mathrm{F}_{\text {air }}$ force arrows to show how the force of air resistance changes on the falling skydiver. At \mathbf{A}, the diver has just jumped; and at \mathbf{E}, the diver has just reached terminal velocity.

5. Fill in the blanks in the following paragraph.

As an object moves faster and faster, the amount of air resistance \qquad (increases, decreases) until a state of terminal velocity is reached. Once terminal velocity is reached, the force of air resistance is \qquad (greater than, less than, equal to) the force of gravity. Hence,
the object will \qquad (continue to accelerate, stop its motion,
stop its acceleration, move back up to its starting position).

