\qquad

Net Force and Acceleration

Read from Lesson 3 of the Newton's Laws chapter at The Physics Classroom:

http://www.physicsclassroom.com/Class/newtlaws/u2l3a.html
http://www.physicsclassroom.com/Class/newtlaws/u2l3b.html http://www.physicsclassroom.com/Class/newtlaws/u2l3c.html

MOP Connection: Newton's Laws: sublevels 3 (front), 8 and 9 (back)

1. Luke Autbeloe drops a 5.0 kg fat cat (weight $=\sim 50.0 \mathrm{~N}$) off the high dive into the pool below (which on this occasion is filled with water). Upon encountering the water in the pool, the cat encounters a 50.0 N upward restraining force. Which one of the velocity-time graphs best describes the motion of the cat? \qquad Accompany your answer with a description of the cat's motion.

Description of cat's motion while falling through air:

Description of cat's motion after hitting the water:
2. Which one of the following dot diagrams best describes the motion of the falling cat from the time that they are dropped to the time that they hit the ground? \qquad The arrows on the diagram represent the point at which the cat hit the water. Support your answer with sound reasoning:

3 Several of Luke's friends were watching the motion of the falling cat. Being "physics types", they began discussing the motion and made the following comments. Indicate whether each of the comments are correct or incorrect? Support your answers.
Student Statement:

a. Once the cat hit the pool, the forces are balanced and the cat will stop. Reason:	Correct? Yes or No	
b. Upon hitting the pool, the cat will accelerate upwards because the pool applies an upward force. Reason:		
c.	Upon hitting the pool, the cat will bounce upwards due to the upward force. Reason:	

Newton's Laws

4. For each force diagram, determine the net or resultant force $\left(\sum \mathrm{F}\right)$, the mass and the acceleration of the object. Identify the direction (the second blank) of the two vector quantities. NOTE: Fgrav stands for the weight of the object.

a. $\mathrm{F}_{\mathrm{grav}}=600 \mathrm{~N}$ $\begin{aligned} & \sum \mathrm{F}= \\ & \mathrm{m}= \\ & \mathrm{a}= \end{aligned}$	b. $\mathrm{F}_{\mathrm{ain}}=40 \mathrm{~N}$ $F_{g r a v}=600 \mathrm{~N}$ $\begin{aligned} & \sum \mathrm{F}= \\ & \mathrm{m}= \\ & \mathrm{a}= \end{aligned}$
c. $\mathrm{F}_{\text {frict }}=2000 \mathrm{~N}$ $\sum \mathrm{F}=$ \qquad \qquad $\mathrm{m}=$ \qquad $\mathrm{a}=$ \qquad \qquad	d. $\begin{aligned} F_{\text {norm }} & =8000 \mathrm{~N} \\ \mathrm{~F}_{\text {frict }}=4000 \mathrm{~N} & \underbrace{-}_{\square} \\ \mathrm{F}_{\mathrm{grav}} & =8000 \mathrm{~N} \end{aligned}$ $\sum \mathrm{F}=$ \qquad , $\mathrm{m}=$ \qquad $a=$ \qquad \qquad
e. $F_{g r a v}=20 \mathrm{~N}$ $\Sigma \mathrm{F}=$ \qquad , \qquad $\mathrm{m}=$ \qquad $\mathrm{a}=$ \qquad ,	f. $\mathrm{F}_{\mathrm{grav}}=40 \mathrm{~N}$ $\Sigma \mathrm{F}=$ \qquad , \qquad $\mathrm{m}=$ \qquad $a=$ \qquad \qquad

