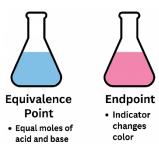
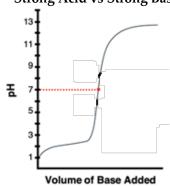

Titrations

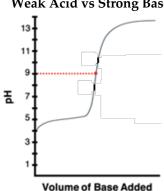
Read from Lesson 4c: <u>Titrations</u> in the Chemistry Tutorial Section, Chapter 15 of The Physics Classroom


Titrations in the Chemistry Lab

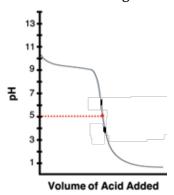
- Titration: Analytical method to determine unknown concentration (analyte) using a known solution (titrant).
- Titrations rely on neutralization stoichiometry and precise volume measurements.


Equivalence Point vs. Endpoint

- **Equivalence Point**: Stoichiometric balance (acid = base).
- Endpoint: Indicator changes color—should closely match the equivalence point.

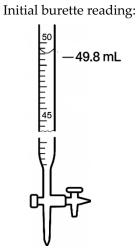


Titration Curve Comparison


Strong Acid vs Strong Base

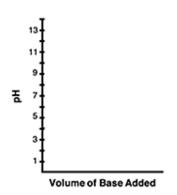
Weak Acid vs Strong Base

Weak Base vs Strong Acid

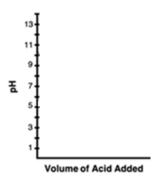

Indicator Selection

Titration Type	pH at Equivalence	Best Indicator	Color Change Range
Strong Acid + Strong Base	= 7.0	Bromothymol Blue	6.0–7.4
Weak Acid + Strong Base	> 7.0	Phenolphthalein	8.0-10.0
Weak Base + Strong Acid	< 7.0	Methyl Red	4.0-6.0

Acids and Bases


Questions

- 1. During an acid base neutralization reaction, LiOH solution from a burette is used to neutralize a HBr solution.
 - Use the burette images to determine the volume of lithium hydroxide used:



b. If 17.20 mL of 0.250 M HBr was neutralized, determine the molarity of the lithium hydroxide solution used.

c. In the space provided, sketch the titration curve. Predict and label the approximate pH at the equivalence point for this reaction.

- 2. Molly Cule and Aaron Agin are doing a titration of a weak base with a strong acid.
 - a. In the space provided, sketch the titration curve. Predict and label the approximate pH at the equivalence point for this reaction.


Acids and Bases

b. Molly and Aaron must choose an appropriate pH indicator to help them to determine when the titration has reached its endpoint. Molly wants to use methyl red.; Aaron prefers phenolphthalein. Who is correct? Justify your answer.

c. Molly and Aaron continue the titration. They titrate 35.00 mL of ammonia (NH₃) with 0.367 M HCl. The endpoint is reached after adding 47.80 mL of acid. Determine the molarity of the ammonia solution.

3. A food chemist is analyzing a 50.0-gram sample of fruit spread to determine its benzoic acid $(HC_7H_5O_2)$ content. She performs a titration using a 0.100 M standardized NaOH solution, and the endpoint is reached after 25.17 mL of NaOH has been added.

- b. Determine the number of moles of benzoic acid originally present in the fruit spread.
- c. Calculate the mass of benzoic acid present in the sample.
- d. Determine the percent by mass of benzoic acid in the fruit spread.