Salt Hydrolysis

Read from Lesson 5: Hydrolysis of Salts in the Chemistry Tutorial Section, Chapter 15 of The Physics Classroom:

Part a: Predicting and Explaining the Acidity Level of Salts

Part b: Ka and Kb Values of Conjugate Acid-Base Pairs

Part 1: Hydrolysis of Salts

• Salt hydrolysis occurs when ions from a dissolved salt react with water, potentially forming acidic or basic solutions.

How to Predict pH of Salt Solutions

- Identify the cation and anion from the salt.
- Classify each ion as acidic, basic, or neutral.
- Combine classifications to predict the solution's pH.

Ion Classification Chart

Ion Type	Examples	Behavior in Water
Acidic Cations	NH ₄ +, Al ³⁺ , Fe ³⁺	Donate $H^+ \rightarrow \text{form } H_3O^+$
Basic Anions	F-, CN-, C ₂ H ₃ O ₂ -	Accept H ⁺ → form OH ⁻
Neutral Cations	Na+, K+, Ca ²⁺	No reaction with water
Neutral Anions	Cl-, NO ₃ -, Br-	No reaction with water
Amphiprotic Ions	HCO ₃ -, H ₂ PO ₄ -	Can act as acid or base

pH Prediction Guide

Cation	Anion	Resulting Solution
Acidic	Neutral	Acidic
Basic	Neutral	Basic
Neutral	Neutral	Neutral
Acidic	Basic	Compare Ka vs. Kb

Part 2: Ka and Kb for Conjugate Acid-Base Pairs

- $K_a \times K_b = K_w = 1.0 \times 10^{-14}$
- K_a: strength of a weak acid and K_b: strength of a weak base

Predicting pH When Both Ions React

- $K_a > K_b \rightarrow Acidic solution$
- $K_b > K_a \rightarrow Basic solution$
- $K_a = K_b \rightarrow Neutral solution$

Examples

Salt	K _a vs. K _b	pH Outcome
NH ₄ F	$K_a (NH_4^+) > K_b (F^-)$	Acidic
NH ₄ CN	$K_b(CN^-) > K_a(NH_4^+)$	Basic
NH ₄ C ₂ H ₃ O ₂	$K_a \approx K_b$	Neutral

Acids and Bases

Salt Hydrolysis Analysis

For each salt listed below, answer the following:

- Write the **dissociation equation** showing the ions formed when the salt dissolves in water.
- Based on hydrolysis, determine whether the **cation** is *acidic* or *neutral*.
- Based on hydrolysis, determine whether the **anion** is *basic* or *neutral*. c.
- Write the **hydrolysis equation** for the ion that reacts with H₂O to form H⁺ or OH⁻. Write **NR** for no reaction. d.
- If both ions undergo hydrolysis, calculate the K_a and K_b for each. Show your work clearly, including how

Salts	to	anal ¹	vze:

f.	you used $K_w = 1.0 \times 10^{-14}$ to relate K_a and K_b . Classify the overall salt solution as acidic , basic , or neutral .
a. b. c. d.	Imple: KNO ₂ The dissociation equation: KNO ₂ (s) \rightarrow K ⁺ (aq) + NO ₂ ⁻ (aq) The K ⁺ is <i>neutral</i> - cations of strong bases do not hydrolyze. The NO ₂ ⁻ is <i>basic</i> - it is the conjugate base of a weak acid. Write the hydrolysis equation: NO ₂ ⁻ (aq) + H ₂ O (l) \rightleftharpoons HNO ₂ (aq) + OH-(aq) Not applicable. This salt solution is basic .
	ts to analyze: Sodium acetate a. b. c. d.
	e. f.
2.	Ammonium bromide a. b. c. d. e.
	f.

Acids and Bases

3.	Potassium carbonate a.
	b.
	c.
	d.
	e.
	f.
4.	Calcium nitrate a.
	b.
	c.
	d.
	e.
	f.
5.	Lithium perchlorate a.
	b.
	c.
	d.
	e.
	f.

Acids and Bases

6.	Ammonium hypochlorite a.
	b.
	c.
	d.
	e.
	f.
7.	Isoquinolinium chloride
	a.
	b.
	c.
	d.
	e.
	f.