Spontaneity and Gibbs Free Energy

Read from Lesson 3: Spontaneity and Gibbs Free Energy in the Chemistry Tutorial Section, Chapter 17 of The Physics Classroom.

Part a: <u>Predicting Spontaneity with Gibbs Free Energy</u>

Part b: Gibbs Free Energy and Equilibrium

$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$

1. Gibbs Free Energy

- **Definition:** Gibbs free energy (G) is a thermodynamic function combining enthalpy (H), entropy (S), and temperature (T): **G** = **H T**•**S**
- Change in Gibbs Free Energy: $\Delta G = \Delta H T\Delta S$
- Driving Forces:
 - o Δ **H (enthalpy change):** Reflects energy spread; negative Δ H favors spontaneity.
 - o $T\Delta S$ (entropy term): Reflects matter spread; positive ΔS favors spontaneity.
- Spontaneity Criteria:
 - o $\Delta G < 0 \rightarrow$ spontaneous process
 - o $\Delta G > 0 \rightarrow$ non-spontaneous (reverse is spontaneous)
 - $\Delta G = 0 \rightarrow equilibrium$
- **Gibbs free energy predicts spontaneity** and connects thermodynamics with equilibrium. ΔG tells us **not only** if a reaction **occurs** but also how far it **proceeds**.

2. Temperature Dependence

- When ΔH and ΔS are in opposition, **temperature determines spontaneity**:
 - o $\Delta H < 0$, $\Delta S < 0 \rightarrow$ spontaneous at low T
 - Δ H > 0, Δ S > 0 \rightarrow spontaneous at high T
 - \circ $\Delta H < 0$, $\Delta S > 0 \rightarrow$ spontaneous at all T
 - Δ H > 0, Δ S < 0 \rightarrow non-spontaneous at all T
- Threshold Temperature: $T_{threshold} = \Delta H/\Delta S$
- At this temperature, $\Delta G = 0$ (equilibrium point).

3. Magnitude of ΔG

- Large negative $\Delta G \rightarrow$ reaction strongly favors products (nearly complete).
- Small negative $\Delta G \rightarrow$ reaction favors products but reaches equilibrium before completion.
- **Positive** $\Delta G \rightarrow$ reaction favors reactants.

4. Gibbs Free Energy and Equilibrium Constant

- At equilibrium: $\Delta G = 0$ and Q = K.
- Relationship between ΔG° and K: ΔG° = $R \bullet T \bullet lnK$ and $K = e^{-\Delta G^{\circ}/RT}$
- Interpretation:
 - $\Delta G^{\circ} < 0 \rightarrow K > 1 \rightarrow \text{products favored.}$
 - $\Delta G^{\circ} > 0 \rightarrow K < 1 \rightarrow \text{reactants favored.}$
 - $\Delta G^{\circ} = 0 \rightarrow K \approx 1 \rightarrow balanced$ equilibrium.

5. Non-Standard Conditions

- General equation: $\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{R} \cdot \mathbf{T} \cdot \mathbf{ln} \mathbf{Q}$
- Q (reaction quotient) reflects current concentrations/pressures.
- As reaction proceeds, Q changes, and ΔG shifts until equilibrium ($\Delta G = 0$, Q = K).

Chemical Thermodynamics

Ouestions

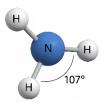
- 1. How does the magnitude of ΔG relate to the "extent" of a reaction?
- 2. For each of the following hypothetical reactions, analyze the signs of ΔH (enthalpy change) and ΔS (entropy change). State whether the reaction is spontaneous at "low temperatures," "high temperatures," "all temperatures," or "no temperatures":

a)
$$\Delta H = +150 \text{ kJ}$$
, $\Delta S = +250 \text{ J/K}$

b)
$$\Delta H = -75$$
 kJ, $\Delta S = -120$ J/K

c)
$$\Delta H = -200 \text{ kJ}$$
, $\Delta S = +50 \text{ J/K}$

d)
$$\Delta H = +10 \text{ kJ}$$
, $\Delta S = -5 \text{ J/K}$


- 3. Consider the formation of magnesium oxide from its elements: $Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$ Given that $\Delta H = -601.6 \text{ kJ}$ and that $\Delta S = 26.9 \text{ J/K}$:
 - a. Is this reaction exothermic or endothermic?
 - b. Does it increase or decrease the disorder of the system?
 - c. Calculate the $\Delta G^{^{\circ}}$ for the reaction at $25~^{\circ}C.$ Is the reaction spontaneous at this temperature?
 - d. Calculate the ΔG° for the reaction at 596 K. Is the reaction spontaneous at this temperature?
- 4. Octane (C_8H_{18}) is a straight-chain alkane and a component of gasoline.
 - a. Write the balanced equation for the combustion of octane with oxygen to produce carbon dioxide gas and liquid water.

b. Without using thermodynamic data, predict whether ΔG° for this reaction is more negative or less negative than ΔH° . Explain your reasoning

Chemical Thermodynamics

- 5. Reaction A has a large negative ΔH and a small negative ΔS . Reaction B has a small negative ΔH and a large positive ΔS .
 - a. Under what temperature conditions could **Reaction B** be spontaneous while **Reaction A** is not?
 - b. Explain your reasoning in terms of ΔG .
- 6. Consider the phase change: NH₃(I) \rightarrow NH₃(g). The Δ H = +23.3 kJ/mol and Δ S = +97.4 J/mol·K.
 - a. How much heat is released or absorbed when 53.47 g of $NH_3(l)$ evaporates?

- b. Calculate the ΔG° for the reaction at 250 K. Is the reaction spontaneous at this temperature?
- c. Calculate the ΔG° for the reaction at 550 K. Is the reaction spontaneous at this temperature?
- d. At which temperature is the process at equilibrium?
- e. What is the normal boiling point (in °C) of ammonia?
- 7. Suppose a reaction is at nonstandard conditions, and \mathbf{Q} (the reaction quotient) > \mathbf{K} . Answer these questions about this reaction and explain your reasoning.
 - a. What sign will ΔG have?
 - b. Will the reaction proceed in the forward or reverse direction to reach equilibrium?