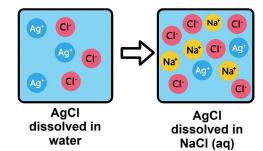
Solubility and Common Ion Effects


Read from Lesson 1c: Solubility and Common Ion Effects in the Chemistry Tutorial Section, Chapter 16 of The **Physics Classroom:**

What Is a Common Ion?

- A **common ion** is an ion shared between two salts.
- Example: In a solution of AgCl and NaCl, Cl⁻ is the common ion.

The Common Ion Effect

 Adding a common ion to a solution containing an insoluble salt reduces the salt's solubility.

K_{sp} Remains Constant

- The solubility product constant (K_{sp}) does not change.
- What changes is the amount of salt that dissolves before equilibrium is reached.

Simplifying Common Ion Problems - Assumption

- Assume the common ion's concentration is **dominated by the soluble salt**.
- If the soluble salt provides 0.10 M of the ion, the small contribution from the insoluble salt is negligible: (0.10 + x is approx. 0.10)

Step-by-Step Guide to Solve Common Ion Problems

- Write the dissociation equation for the insoluble salt.
- Write the Ksp expression.
- **Identify the common ion** and its initial concentration.
- **Set up an ICE table** (Initial, Change, Equilibrium).
- Apply the simplifying assumption to reduce algebraic complexity.
- **Solve for x**, which represents the solubility.

Example: Copper(II) carbonate is an insoluble salt with a K_{sp} value of 2.5×10^{-10} . Determine its solubility in a 0.10 M solution of Na₂CO₃.

$$K_{sp}$$
 = 2.5×10^{-10} = $[Cu^{2+}] * [CO_3^{2-}]$

The CuCO₃ is being dissolved in a solution of Na₂CO₃. This solution contains CO₃² ions; it is the common ion. The concentration of the CO₃² in this solution is initially 0.10 M.

	CuCO ₃ (s)	₽	Cu ²⁺ (aq)	+	CO ₃ ² -(aq)
Initial	Does not matter		0		0.10
Change	-x		+ x		+ x
Equilibrium	Does not matter		х		0.10 + y /

$$K_{sp} = 2.5 \times 10^{-10} = [Cu^{2+}] * [CO_3^{2-}] = (x) * (0.10)$$

 $K_{sp} = 2.5 \times 10^{-10} = [Cu^{2^+}] * [CO_3^{2^-}] = (x) * (0.10)$ $x = 2.5 \times 10^{-9}$, so the solubility of CuCO₃ in a solution of Na₂CO₃ is **2.5** × **10**⁻⁹ M.

Solution Equilibria

Q١	uestions
1.	Why does the solubility product constant (K_{sp}) remain unchanged when a common ion is present?
2.	How does Le Chatelier's Principle explain the shift in equilibrium when a common ion is added to a solution?
3.	Consider a saturated solution of silver iodate. a. What is the molar solubility of this solution in water at 25°C? The K_{sp} of silver iodate is 3.2×10^{-8}
	 b. Silver iodate is now added to a 0.250 M solution of silver chlorate. Identify the common ion and its initial molar concentration. Calculate the molar solubility of silver iodate in this solution.

Solution Equilibria

J	iuton Equinona
	 c. Silver iodate is now added to a 0.480 M solution of potassium iodate. Identify the common ion and its initial molar concentration. Calculate the molar solubility of silver iodate in this solution.
ŀ.	Consider a saturated solution of cobalt(II) hydroxide. a. What is the molar solubility of this solution in water at 25°C? The K_{sp} of cobalt(II) hydroxide is 5.9×10^{-15} .
	 b. Cobalt(II) hydroxide is now added to a 0.525 M solution of sodium hydroxide. Identify the common ion and its initial molar concentration. Calculate the molar solubility of cobalt(II) hydroxide in this solution.
	 c. Cobalt(II) hydroxide is now added to a 0.314 M solution of cobalt(II) chloride. Identify the common ion and its initial molar concentration. Calculate the molar solubility of cobalt(II) hydroxide in this solution.