Common Ion Effects and Buffers

Read from Lesson 2 Part e: <u>Common Ion Effects and Buffers</u> in the Chemistry Tutorial Section, Chapter 16 of The Physics Classroom:

What Is a Common Ion?

A common ion is shared between a weak acid/base and a salt. Example: HF in NaF solution → both contain F⁻. The presence of a common ion suppresses further dissociation of the weak acid/base.

Common Ion Effect

- Adding a common ion shifts equilibrium toward reactants (Le Chatelier's Principle).
- Result: Lower $[H_3O^+]$ or $[OH^-]$, higher pH (less acidic) or lower pH (less basic).
 - o Example: 0.50 M HF alone has a pH \approx 1.74, but 0.50 M HF + 0.50 M NaF has a pH \approx 3.18
- Why does pH go up (less acidic) when a common ion is present? Because the presence of F⁻ suppresses HF dissociation, so fewer H₃O⁺ are produced.

Le Chatelier's Principle in Action

- Adding a product ion (e.g., F-) shifts equilibrium left.
- Less dissociation → lower [H₃O⁺] or [OH⁻] → altered pH.

Henderson-Hasselbalch Equation

- Used to calculate pH of buffer systems: $pH = pK_a log([HA] / [A^-])$
- Shows how changing [A-] or [HA] affects pH.
- The role of [A⁻]: As [A⁻] increases (common-ion concentration increases), dissociation of HA decreases, so $[H_3O^+](x)$ decreases \rightarrow higher pH (less acidic). (Increasing [A⁻] \rightarrow higher pH (more basic)
- The role of [HA]: As [HA] increases (common-ion concentration decreases), dissociation of HA increases, so $[H_3O^+](x)$ increases \rightarrow lower pH (more acidic). (**Increasing [HA]** \rightarrow **lower pH (more acidic)**)

Buffer Systems

- A buffer is a solution of a weak acid/base and its conjugate.
- It resists pH changes when small amounts of acid/base are added.

How Buffers Work

- Mechanism (acid/conjugate base buffer):
- If a strong acid (H₃O⁺) is added → the conjugate base in the buffer reacts with it, reducing the increase in [H₃O⁺].
- If a strong base (OH⁻) is added → the weak acid in the buffer donates H⁺ to neutralize some OH⁻, reducing
 the decrease in [H₃O⁺].
- The net effect: pH changes only modestly, rather than dramatically.

Problem-Solving Steps

- Identify the weak acid + its conjugate base OR the weak base + its conjugate acid.
- Write the dissociation equation.
- Write the equilibrium constant expression $(K_a \text{ or } K_b)$.
- Set up an ICE table: Initial concentrations (including the common ion), Change, Equilibrium.
- Substitute equilibrium concentrations into the constant expression.
- Solve for **x** (change, or the $[H_3O^+]$ or $[OH^-]$). Check approximation (e.g., x < 5% of initial).
- Compute pH (or pOH) from the relevant ion concentration.
- Interpret the effect of the common ion: compared to the system without common ion, dissociation is suppressed; pH shifts accordingly.

Solution Equilibria

Questions

- 1. Define in your own words the **common ion effect**. Then explain why adding a soluble salt of a conjugate base (e.g., **KClO₂**) to a weak acid solution (**HClO₂**) causes the pH to increase.
- 2. For each pair of compounds listed below, identify the common ion.
 - If the common ion acts as a **spectator ion**, label it as *spectator ion*.
 - If the common ion **undergoes hydrolysis in water**, write the balanced equation for its hydrolysis reaction.
 - a. equal volumes of 1 M NaBr and 1 M KBr
 - b. equal volumes of $1\,M\,H_2SO_3$ and $1\,M\,KHSO_3$
 - c. equal volumes of 1 M CsCl and 1 M HCl
 - d. equal volumes of 1 M H₃PO₄ and 1 M NaH₂PO₄
- **3.** Bella Buffer and Aaron Agin are reviewing their chemistry notes after a lesson on buffer solutions. Their teacher presented four examples of solutions, each in a separate flask, and asked the class to determine which ones are buffers. Aaron claims that all four solutions are buffers, but Bella disagrees. **How can Bella explain to Aaron why not all the solutions are buffers?** *Note: Each flask contains 100.0 mL of an equimolar mixture of the compounds listed.*

Flask 1: C₆H₅NH₂ and C₆H₅NH₃Cl Flask 3: HF and HCl

Flask 4: HC₂H₃O₂ and NaC₂H₃O₂

Solution Equilibria

4.	A 0.100 M solution of propanoic acid (HC ₃ H ₅ O ₂) is prepared. (<i>The K_a for propanoic acid is</i> 1.3×10^{-5}) a. Write the balanced chemical equation for the dissociation of propanoic acid in water. Then, write the equilibrium-constant expression for this reaction.
	b. Calculate the pH of the 0.100 M propanoic acid solution.
	c. A mass of 0.500 g of sodium propanoate ($NaC_3H_5O_2$) is added to 250.0 mL of the 0.100 M propanoic acid solution. How many moles of $NaC_3H_5O_2$ were added? What is the concentration of $NaC_3H_5O_2$?
	Assuming the volume of the solution remains unchanged, calculate the following: d. The new concentration of the propanoate ion, $C_3H_5O_2^-$ (aq), in the solution.
	$\boldsymbol{e}.$ The new concentration of the hydronium ion, H_3O^+ (aq), in the solution.
	f. The new pH of the solution.

Solution Equilibria

5.	A 0.250 M solution of pyridine (C_5H_5N) is prepared. (<i>The K_b for pyridine is 1.5×10</i> ⁻⁹) a. Write the balanced chemical equation for the dissociation of pyridine in water. Then, write the equilibrium constant expression for this reaction.
	b. Calculate the pH of the 0.250 M solution of pyridine solution.
	c. A mass of 0.350 g of pyridinium chloride (C_5H_6NCl) is added to 500.0 mL of the 0.250 M solution of pyridine. How many moles of C_5H_6NCl were added? What is the concentration of C_5H_6NCl ?
	Assuming the volume of the solution remains unchanged, calculate the following: d . The new concentration of the pyridinium ion, $C_5H_6N^+(aq)$, in the solution.
	e . The new concentration of the hydroxide ion, OH ⁻ (aq), in the solution.
	f. The new pH of the solution.

©The Physics Classroom. If found on another website or portal that isn't password protected, report at physicsclassroom.com/copyright.