
Titration Analysis

Read from Lesson 2 Part f: <u>Titration Analysis</u> in the Chemistry Tutorial Section, Chapter 16 of The Physics Classroom:

Vocabulary (example is a weak acid strong base titration)

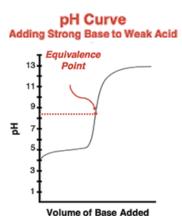
- * **Titration** is an analytical method used to determine the concentration of an unknown acid or base by reacting it with a known volume and concentration of titrant.
- * A **titration curve** plots pH vs. volume of titrant added, revealing key stages of the reaction.
- * Analyte: the solution with unknown (or given) weak acid, HA, concentration, and volume.
- * Titrant: a strong base of known concentration added gradually.
- * Equivalence point: the point where moles of base added = moles of acid originally present (for monoprotic acid). At this point, the acid is completely neutralized.
- * **Titration curve**: a plot of pH vs. volume of titrant added; shows a characteristic "steep rise" near equivalence.

• What to note: the pH of the solution as base is gradually added and how to calculate the pH at key points along the curve (before equivalence, at equivalence, after equivalence)

Analysis of a Titration of a Weak Acid with a Strong Base Before the Equivalence Point

- The solution contains excess HA and its conjugate base A-.
- Use stoichiometry to find moles of HA and A-.
- Apply the Henderson-Hasselbalch equation or ICE tables to calculate pH.

At the Equivalence Point


- All HA is neutralized; only A⁻ remains.
- A- undergoes hydrolysis: $A^- + H_2O \rightleftharpoons HA + OH^-$
- Use K_b (derived from K_a) and ICE tables to calculate pH.
- pH > 7 due to basic nature of A^- .

After the Equivalence Point

- Excess OH⁻ dominates the solution.
- Calculate [OH-] from excess moles and total volume.
- Convert to pOH, then to pH: pH = 14 pOH

Graph of Titration

• The curve shows a gradual rise in pH before equivalence, a sharp jump at equivalence, and leveling off after.

Solution Equilibria

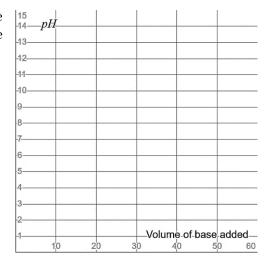
Part 1 Questions

Paige H. Scale and Al Kaline are performing a weak acid–strong base titration. They begin with 35.00 mL of a 1.00 M hydrocyanic acid (HCN) (K_a is 6.2×10^{-10}) solution in a flask. They titrate it using a standardized 1.00 M NaOH solution.

Use this information to answer the following questions about the different stages of the titration and to make a titration curve on the graph. Assume the temperature is 25°C throughout the process.

1.	Calculate the number of moles of HCN in the 35.00 mL of a 1.00 M HCN solution.
2.	Calculate the $[H_3O^+]$ and then determine the initial pH of the HCN solution (before adding NaOH).
3.	After adding 17.50 mL NaOH, calculate the remaining moles of HCN and moles of CN ⁻ formed.
4.	Calculate the [HCN] and [CN-] (consider total volume).
5.	What is the pH at this point in the titration?

So	lution Equilibria
6.	At 35.00 mL NaOH added, all acid is neutralized. The flask contains CN ⁻ . Calculate [CN ⁻] and use hydrolysi to determine pH at equivalence.
7.	At 37.00 mL NaOH added, there is excess OH ⁻ . Calculate [OH ⁻] and pH.


Solution Equilibria

8. At 50.00 mL NaOH added, calculate [OH-] and pH again.

9. Fill in the data table with the data from your calculations. Plot the points and sketch a best fit curve on the graph. Label the equivalence point.

Data Table:

Volume of base added	pН
0 mL	
17.50 mL	
35.00 mL	
37.00 mL	
50.00 mL	

Solution Equilibria

Part 2 Questions

2. Describe how the titration curve (pH vs volume of titrant) for a weak acid + strong base differs from one for a strong acid + strong base. (Sketch the two curves to help with your description.)

Titration curve (pH vs

Titration curve (pH vs

Titration curve (pH vs

Titration curve (pH vs volume of titrant) for a weak acid + strong base Titration curve (pH vs volume of titrant) for a strong acid + strong base