Describing Motion with Data Tables

MOP Connection: Kinematic Concepts: Mission KC8

Motion can be described with words, diagrams, data tables, equations, and graphs. Using data tables to describe the motion of objects involves showing how the position and/or the velocity changes with regular intervals of time change.

1. What is the speed of the following objects? Record below the table.

Object A

Time (s)	Pos'n (m)
0.0	0.0
1.0	5.0
2.0	10.0
3.0	15.0
4.0	20.0
5.0	25.0

Object B

Time (s)	Pos'n (m)
0.0	6.0
1.0	10.0
2.0	14.0
3.0	18.0
4.0	22.0
5.0	26.0

Object C

Time (s)	Pos'n (m)
0.0	2.0
0.5	6.0
1.0	10.0
1.5	14.0
2.0	18.0
2.5	22.0

$$Speed = \underline{\hspace{1cm}} m/s$$

$$Speed = \underline{\hspace{1cm}} m/s$$

2. The dot diagram for **Object B** is shown below. Draw the dot diagram for objects **A** and **C**.

3. What is the acceleration of the following objects? Record below the table.

Object D

Time (s)	Vel. (m/s)
0.0	4.0
1.0	8.0
2.0	12.0
3.0	16.0
4.0	20.0
5.0	24.0

Object E

Time (s)	Vel. (m/s)
0.0	18.0
0.5	15.0
1.0	12.0
1.5	9.0
2.0	6.0
2.5	3.0

Object F

Time (s)	Pos'n (m)
0.0	4.0
0.5	6.0
1.0	8.0
1.5	10.0
2.0	12.0
2.5	14.0

$$Accel'n = \underline{\hspace{1cm}} m/s/s$$

$$Accel'n = \underline{\hspace{1cm}} m/s/s$$

$$Accel'n = \underline{\hspace{1cm}} m/s/s$$

4. Explain your answer for **Object F**:

5.	Draw the dot diagram for objects D , E , and F .		
	D: <		<u> </u>
	E: <		<u> </u>
	F: <		
6.	The data at the right represent the motion of a car.	Time (s)	Velocity (m/s)
	a. Determine the acceleration for the car. Include units.	0.0	0.0
		1.0	5.0
		2.0	10.0
	b. Is the velocity of this car constant? Explain how you know.	3.0	15.0
	Explain now you rate	4.0	20.0
7.	Can an accelerating object have a constant acceleration and a cl	nanging velocity	7?Explain.
8.	Can an accelerating object have a constant velocity and a chang	ging acceleration	n? Explain.
9.	Object G is moving at 20.0 m/s and then accelerates at 6.0 m/s moving at 24.0 m/s and accelerates at -6.0 m/s/s for 4.0 second acceleration. Fill in the tables for objects G , H , and I .	s/s for 2.0 secon ds. Object I has	a non-uniform
	Object G Object H		Object I

Time (s)	Vel. (m/s)
0.0	
0.5	
1.0	
1.5	
2.0	

Time (s)	Vel. (m/s)
0.0	
1.0	
2.0	
3.0	
4.0	

object G	Object H		Object 1	
Vel. (m/s)	Time (s)	Vel. (m/s)	Time (s)	Vel. (m/s)
	0.0		0.0	12.0
	1.0		1.0	
	2.0		2.0	
	3.0		3.0	
	4.0		4.0	