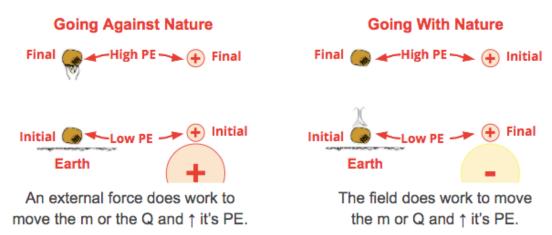
Electric Potential

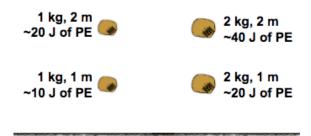

Lesson Notes

Learning Outcomes

What is electric potential and how is it related to electric potential energy?

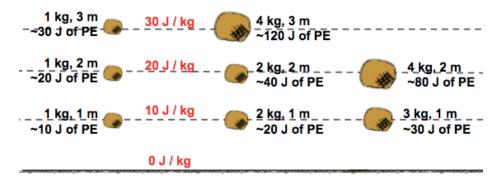
Electric Potential Energy ... Revisited

The movement of a charge (Q) within an electric field is accompanied by a change in potential energy (PE).



Factors Affecting Gravitational Potential Energy

The gravitational potential energy (PEgrav) depends upon the mass (m) and the height (h) of the object.


- As the h is doubled, the PEgrav is doubled.
- As the m is doubled, the PEgrav is doubled.

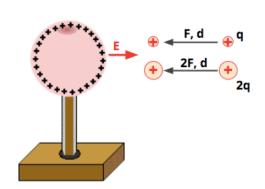
Gravitational potential energy is more than just a location-dependent quantity. Mass also factors into the equation.

Gravitational Potential

The gravitational potential is defined as the potential energy per mass (Joule/kilogram).

Gravitational potential is a purely location-dependent quantity that rates a location in terms of the energy stored in the gravitational field per kg of mass.

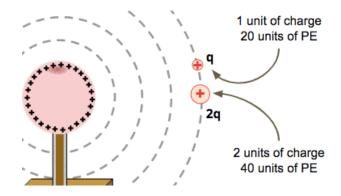
Factors Affecting Electrical Potential Energy (PEelect)


Work is done to move a + test charge against an E field.

The work done changes the PE_{elect} and is equal to the Δ PE_{elect}.

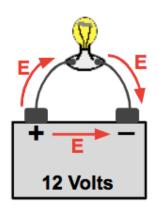
Moving twice the charge (2q) the same distance d would require twice the work and change the PE_{elect} by twice the amount.


So like PE_{grav}, electric PE depends on two factors:


- 1. location
- 2. the amount of test charge at that location.

Electric Potential

The electric potential (V) describes the amount of energy (PE) stored in an electric field at a location in a way that is independent of the amount of test charge (q).



An object with twice the charge (2q) would have twice the PE but the same electric potential (PE/charge) at that

same location.

Electric Potential in Circuits

- Battery-powered electric circuits have locations of high and low electric potential.
- Outside the battery, a + test charge would move from the + terminal to the - terminal (in the direction of the E field). This results in a loss of electric potential energy.
- So the negative terminal is the low PE, low electric potential terminal.
- Inside the battery, work is done to move a + test charge from to + terminal, against the E field. This adds PE to the + test charge. So the + terminal is the high PE, high electric potential terminal.

