Current-Voltage-Resistance Relationship Lesson Notes

Learning Outcomes

- How are current, resistance, and voltage mathematically related?
- How can the relationship be used?

The BIG Equation

The most prevalent equation for electric circuits is ...

$\Delta V = I \cdot R$

where

 ΔV = electric potential difference (Unit: volt, V) I = current (Unit: ampere, A) R = resistance (Unit: ohm, Ω)

The electrical potential difference between any two points on a circuit is equal to the current that flows between those two points multiplied by the total resistance of all elements existing between those two points.

Predicting Current

The current is ...

- directly proportional to the electric potential difference (ΔV)
- inversely proportional to the resistance (R)

ΔV and I

- If ΔV is doubled, then I is doubled.
- If ΔV is tripled, then I is tripled.
- If ΔV is halved, then I is halved.

4.5 V

Current Calculations

	Diagram	∆V _{battery}	Rtotal	I	
1.	<u>و</u>	1.5 V	3.0 Ω	0.5 A	
2.	(jī)	3.0 V	3.0 Ω	1.0 A	
3.	ίΩ [®]	4.5 V	3.0 Ω	1.5 A	_
	Diagram	ΔV _{battery}	Rtotal	I	
4.		4.5 V	3.0 Ω	1.5 A	
5.		4.5 V	6.0 Ω	0.75 A	

9.0 Ω

0.5/

R and I

If **R** is doubled, then **I** is halved. If **R** is tripled, then **I** is 1/3rd as much. If **R** is halved, then **I** is doubled.

Rows 1 and 2: Doubling $\Delta V \Rightarrow$ Doubles I

Rows 1 and 3: Tripling $\Delta V \Rightarrow$ Triples I

Rows 4 and 5: Doubling R ⇒ Halves I

Rows 4 and 6: Tripling $R \Rightarrow I$ is $\frac{1}{3}$ -rd original

Equations as a Guide To Thinking

Determine the answers to Parts a. - i. below.

A circuit is wired with a energy supply, a resistor and an ammeter (for measuring I). The ammeter reads I as 24 mA (milliAmps). Determine the new I if the ΔV was ...

- a. ... increased by a factor of 2 and the **R** was held constant.
- b. ... increased by a factor of 3 and the **R** was held constant.
- c. ... decreased by a factor of 2 and the ${\ensuremath{\mathsf{R}}}$ was held constant.
- d. ... held constant and the \mathbf{R} was increased by a factor of 2.
- e. ... held constant and the R was increased by a factor of 4.
- f. ... held constant and the **R** was decreased by a factor of 2.
- g. ... increased by a factor of 2 and the \mathbf{R} was increased by a factor of 2.
- h. ... increased by a factor of 3 and the **R** was decreased by a factor of 2.
- i. ... decreased by a factor of 2 and the **R** was increased by a factor of 2.

Quantity	Symbol	Equation(s)	Standard Metric Unit	Other Units
Potential Difference (a.k.a. voltage)	ΔV	$\Delta V = \Delta PE / Q$ $\Delta V = I \cdot R$	Volt (V)	J/C
Current	I	I = Q / t $I = \Delta V / R$	Ampere (A)	Amp or C / s or V / Ω
Power	Р	$P = \Delta PE / t$ (more to come)	Watt (W)	J/s
Resistance	R	R = ρ • L / A R = ΔV / I	Ohm (Ω)	V/A
Energy	E or ∆PE	$\Delta PE = \Delta V \cdot Q$ $\Delta PE = P \cdot t$	Joule (J)	V ∙ C or W ∙ s

Quantities, Symbols, Equations, Units