Parallel Circuit Analysis

Lesson Notes

Learning Outcomes

- How are the variety of circuit parameters mathematically related for parallel circuits?
- How do you analyze a parallel circuit?

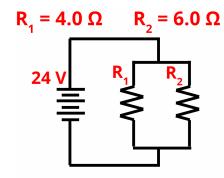
Mathematical Equations

Voltage Drops: A charge making a loop of a parallel circuit will have a single voltage drop as it passes through one of the branches. Thus,

$$\Delta V_{\text{battery}} = \Delta V_1 = \Delta V_2 = \Delta V_3 = \dots$$

Current: The flow rate outside the branches and in the battery equals the sum of the branch currents: $l_{battery} = l_1 + l_2 + l_3 + ...$

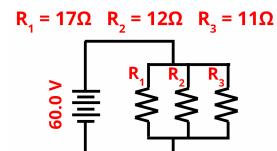
The branch currents depend on the battery voltage and the resistance of the resistor in that branch: $I_1 = \Delta V_{battery}/R_1$ $I_2 = \Delta V_{battery}/R_2$ $I_3 = \Delta V_{battery}/R_3$


Equivalent Resistance: The equivalent resistance (R_{eq}) of a parallel circuit can be calculated using ...

$$1/R_{eq} = 1/R_1 + 1/R_2 + 1/R_3 + ...$$

For the three example problems, fill in all blanks. Show your work clearly.

Example Problem 1

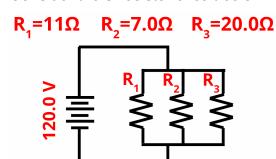

Two resistors - 4.0 Ω and 6.0 Ω - are connected to a 24-volt power supply. Determine the equivalent resistance, the current in each resistor and battery, and the voltage drops across each resistor.

$$R_{eq} =$$
 $I_{battery} =$ $\Delta V_1 =$ $\Delta V_2 =$

Example Problem 2

Consider the 3-resistor circuit below. Determine all the blanks.

l₂ = _____


$$\Delta V_1 = \underline{\hspace{1cm}}$$

$$\Delta V_2 =$$

$$\triangle V_3 = \underline{\hspace{1cm}}$$

Example Problem 3

Consider the 3-resistor circuit below. Determine all the blanks.

$$I_2 = \underline{\hspace{1cm}} \Delta V_2 = \underline{\hspace{1cm}}$$

$$\Delta V_1 = \underline{\hspace{1cm}}$$

$$\Delta V_2 = \underline{\hspace{1cm}}$$

$$I_3 = \underline{\hspace{1cm}} \Delta V_3 = \underline{\hspace{1cm}}$$