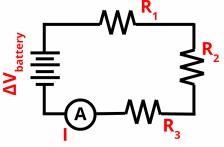
Series Circuit Analysis Lesson Notes

Learning Outcomes


- How are the variety of circuit parameters mathematically related for series circuits?
- How do you analyze a series circuit?

Mathematical Equations

Equivalent Resistance: the collection of resistors act together to create an overall total resistance ...

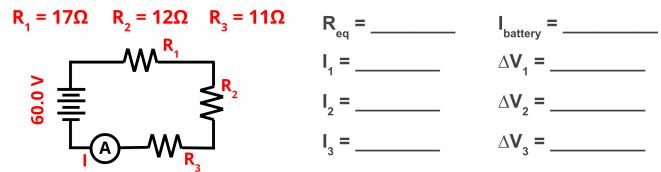
 $R_{eq} = R_1 + R_2 + R_3 + \dots$

Current: the current in a series circuit is everywhere the same - in every wire, resistor, and battery ... $I_{battery} = I_1 = I_2 = I_3 = ...$



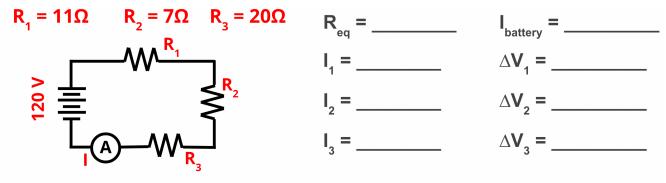
Voltage Drops: The voltage drop (ΔV) across any resistor can be calculated using: $\Delta V_1 = I \cdot R_1$ $\Delta V_2 = I \cdot R_2$ $\Delta V_3 = I \cdot R_3$ As a check, use $\Delta V_{battery} = \Delta V_1 + \Delta V_2 + \Delta V_3$

Watch the video and record answers and solutions/notes for the following three Example Problems.


Example Problem 1

Two resistors - 4.0 Ω and 6.0 Ω - are connected to a 24-volt power supply. Determine the equivalent resistance, the current in each resistor and battery, and the voltage drops across each resistor.

Example Problem 2


Consider the 3-resistor circuit below. Determine all the blanks.

Work Shown Here:

Example Problem 3

Consider the 3-resistor circuit below. Determine all the blanks.

Work Shown Here: