Adding and Resolving Forces

Lesson Notes

Learning Outcomes

- How can force vectors be added?
- How can force vectors be resolved into components?
- What role does adding and resolving vectors have in the analysis of Physics problems?

The BIG Idea

$\mathrm{m}=2.5 \mathrm{~kg}$
Determine a

The problem on the left is easy. The forces readily add because they are directed opposite each other. The problem on the right is difficult because of the angled 65 N vector.
The goal is to learn to simplify complex problems by resolving angled vectors into x - and y-components.

$\mathrm{m}=2.5 \mathrm{~kg}$
Determine a

Four Complex Problem Types

Graphical Addition of Vectors - Head-to-Tail Method

- Draw $1^{\text {st }}$ vector.
- Starting at head of $1^{\text {st }}$, draw $2^{\text {nd }}$ vector.
- Starting at head of $2^{\text {nd }}$, draw $3^{\text {rd }}$ vector.
- Draw resultant from tail of
$1^{\text {st }}$ to head of $3^{\text {rd }}$ vector.

Problem:
Find the vector sum
(resultant) of $\mathrm{A}+\mathrm{B}+\mathrm{C}$.

Solution:
Using the graphical method of adding vectors.

Problem:
Find the vector sum (resultant) of A + B.

$A B=5 N$

Solution:
Using Pythagorean theorem and SOH CAH TOA.

$$
\begin{gathered}
R^{2}=A^{2}+B^{2}=(12)^{2}+(5)^{2} \\
R^{2}=\operatorname{SQRT}(169)=13 N
\end{gathered}
$$

SOH CAH TOA sine $\theta=$ opp/hyp
cosine $\theta=$ adj/hyp
tangent $\theta=o p p / a d j$
$\Theta=\tan ^{-1}$ (opp/adj)

$$
\Theta=\tan ^{-1}(5 / 12)
$$

$$
\Theta=25^{\circ}
$$

Vector Components

- Vectors directed at angles to the coordinate axes can be thought of as having two parts. These parts are called vector components.
- A_{x} and A_{y} are the components of vector A. They are determined by projecting the vector A onto the x - and the y-axis.
- A comonent describes the effect of a vector in a given direction.

Vector Resolution

Vector resolution is the process of determining the components or parts of a vector. It relies on the use of trigonometry - SOH CAH TOA.

$$
\begin{aligned}
& A=\text { hypotenuse } \\
& A_{x}=\text { side adjacent } \theta \\
& A_{y}=\text { side opposite } \theta
\end{aligned}
$$

$$
\begin{gathered}
A_{x}=A \cdot \operatorname{cosine} \theta \\
A_{y}=A \cdot \operatorname{sine} \theta
\end{gathered}
$$

