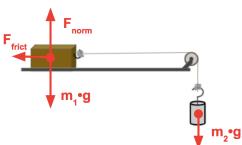
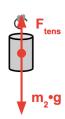
Modified Atwood's Machines Lesson Notes

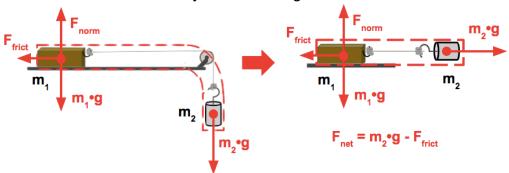

Learning Outcomes

 How do you use a free-body diagram and Newton's second law to analyze and solve a modified Atwood's Machine problem?

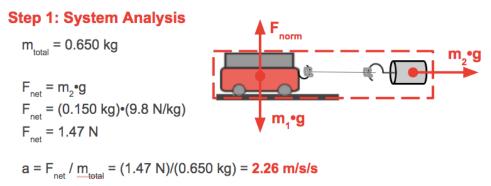

The Bsic Approach

A modified Atwood's Machine problem can be analyzed in two steps.

A System Analysis
 Relate the acceleration to the mass values.

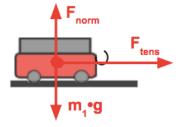


An Individual
 Object Analysis
 Relate the tension in the string to the acceleration and the mass values.


Straightening Out the System

A convenient strategy involves picturing the gravity force on the hanging mass to be a horizontal force that accelerates the system to the right.

Example 1:


A 0.150-kg hanging mass (m₂) is attached by a string to a 0.500-kg cart (m₁) at rest on a friction-free table. Calculate the acceleration of the cart and the tension in the string.

Step 2: Individual Object Analysis

Consider
$$\mathbf{m}_1$$
: $\mathbf{m}_1 = 0.500 \text{ kg}$

$$F_{net} = m_1 \cdot a$$

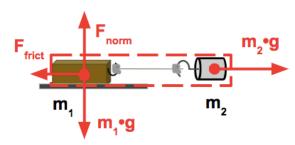
 $F_{net} = (0.500 \text{ kg}) \cdot (2.26 \text{ m/s/s})$
 $F_{net} = 1.13 \text{ N}$

The vertical forces balance. The tension force is the one unbalanced force that causes the acceleration. It equals F_{sst}.

Example 2:

A 0.250-kg hanging mass (m_2) is attached by a string to a 0.500-kg block (m_1) at rest on a table. The coefficient of friction (μ) is 0.215. Calculate the acceleration of the cart and the tension in the string.

Step 1: System Analysis

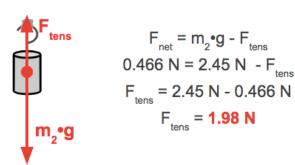

$$m_{total} = 0.750 \text{ kg}$$

$$m_2 \cdot g = (0.250 \text{ kg}) \cdot (9.8 \text{ N/kg}) = 2.45 \text{ N}$$

$$F_{frict} = \mu \cdot F_{norm} = \mu \cdot m_1 \cdot g$$

$$F_{frict} = (0.215) \cdot (0.500 \text{ kg}) \cdot (9.8 \text{ N/kg})$$

$$F_{frict} = 1.05 \text{ N} \quad (1.0535 \text{ N})$$


$$F_{net} = m_2 \cdot g - F_{frict} = 2.45 \text{ N} - 1.05 \text{ N} = 1.40 \text{ N}$$

 $a = F_{net} / m = (1.40 \text{ N})/(0.750 \text{ kg}) = 1.86 \text{ m/s/s}$

Step 2: Individual Object Analysis

Consider
$$m_2$$
: $m_2 = 0.250 \text{ kg}$

$$m_2 \cdot g = (0.250 \text{ kg}) \cdot (9.8 \text{ N/kg}) = 2.45 \text{ N}$$

$$F_{net} = m_2 \cdot a = (0.250 \text{ kg}) \cdot (1.86 \text{ m/s/s})$$

 $F_{net} = 0.466 \text{ N} \quad (0.4655 \text{ N})$

