Free Fall

Lesson Notes

What is a free-falling object?

A free-falling object is an object upon which ______.

Direction of Velocity Vector:

As the free-falling object rises, the velocity is directed ______. As the free-falling object falls, the velocity is directed ______.

Direction of Acceleration Vector:

The direction of the acceleration for free-falling objects is always

Acceleration Caused by Gravity:

The acceleration of a free-falling object is _____ m/s/s. This value does **NOT** depend upon mass, speed, or direction of travel.

Representation of Falling Motion:

Vector Diagrams for an Up-and-Down Free-fall Motion:

Velocity Vectors:

- Velocity is changing.
- Velocity decreases when rising, ...
- ... and increases when falling.
- Velocity is directed up when rising and directed down when falling.

Acceleration Vectors:

- Acceleration NEVER changes.
- Value of acceleration is constant.
 - Direction of acceleration is downward.

Free Fall Summary:

Free fall motion can be summarized as follows:

- The acceleration is directed downward.
- The acceleration value is 9.8 m/s/s.
- The velocity changes by -9.8 m/s each second.
- The object slows down as it rises; the object speeds up as it falls.
- The velocity is directed upward if the object is rising upward; the velocity is directed downward if the object is falling downward.

Your Turn to Practice:

Use a = ~ 10 m/s², down to analyze the up-and-down motion at the right.

- 1. About how much time is the object in the air?
- 2. What is the initial speed at point A?
- 3. At what points is the object moving slower than it is at point B?

