Impulse - Momentum Change Theorem Lesson Notes

Learning Outcomes

- What does impulse mean?
- What does impulse do?
- What does the impulse-momentum change theorem tell us about collisions and explosions?

The BIG Idea

- The impulse-momentum change theorem is the first of two accounting methods that we will learn in this Tutorial Series that help us to analyze collisions and explosions.
- The impulse-momentum change theorem is the first of two accounting methods that we will learn in this Tutorial Series that help us to analyze collisions and explosions.

What is Impulse?

A collision force will always cause an object to change its velocity - to speed up, to slow down, or to change direction.

Consider the task of stopping a football player:
It takes a combination of force and time to bring the player's momentum to 0 .
This combination of force and time is referred to as impulse. Mathematically, impulse is ...
Impulse = Force • Time

Unit on impulse: Newton•second (abbreviated $N \cdot s$).

What Does Impulse Do?

During a collision, a force acts upon an object for a given amount of time to cause a change in momentum. That is, an impulse causes a momentum change.
And the impulse is equal to the momentum change.
Impulse = Momentum Change

Impulse is a means of transferring momentum, adding it to an object or removing it from an object.

Initial

$$
p=+60
$$

kg•m/s

Initial

$p=+60$
$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$

Final

$p=+40$
kg•m/s

Many Ways to Get the Same Impulse
How do you stop an 80-kg football player moving at $10 \mathrm{~m} / \mathrm{s}$?

$$
\text { Momentum Change }=\mathrm{m} \cdot \Delta \mathrm{v}=(80 \mathrm{~kg}) \cdot(-10 \mathrm{~m} / \mathrm{s})=-800 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

You must apply an impulse of -800 $\mathrm{N} \cdot \mathrm{s}$ to stop the player! That impulse can come from many combinations of force and time.

$\Delta M o m e n t u m$	Impulse	Force	Time
$-800 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$	$-800 \mathrm{~N} \cdot \mathrm{~s}$	-800 N	1.0 s
$-800 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$	$-800 \mathrm{~N} \cdot \mathrm{~s}$	-80 N	10.0 s
$-800 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$	$-800 \mathrm{~N} \cdot \mathrm{~s}$	-8000 N	0.10 s
$-800 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$	$-800 \mathrm{~N} \cdot \mathrm{~s}$	-80000 N	0.010 s

Hit-and-Stick vs. Rebounding Collisions
The momentum change of an object is always calculated as ...
Final momentum - Initial Momentum
... or simply as $m \cdot \Delta v$ where the Δv is Final Velocity - Initial Velocity

