Action-Reaction and the Law of Momentum Conservation Lesson Notes

Strategic Questions

- What is meant by the law of action-reaction?
- How does the momentum conservation principle emerge from the law of action-reaction?
- What does it mean to say that momentum is conserved?

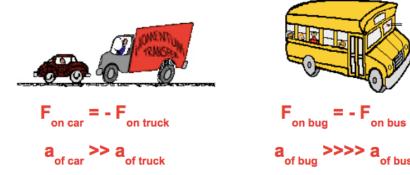
Newton's Third Law

For every **action**, there is an **equal** and **opposite reaction**.

Forces are the result of simultaneous, mutual, interactions between two objects.

Interaction Force Pair Example

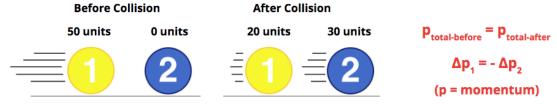
- Person pushes down on floor.
- Floor pushes up on person.


A **force** is a push or pull acting on an object whenever it pushes or pulls on another object.

Forces vs. Accelerations Newton's Third Law:

The interaction forces between objects are equal in magnitude.

Newton's Second Law:

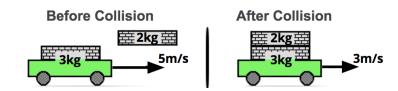

The acceleration of an object is inversely proportional to its mass.

The 3rd law describes the cause of acceleration. The 2nd law describes the effect of the force.

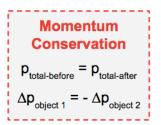
The Law of Momentum Conservation:

For any collision occurring in an isolated system, the total amount of momentum possessed by objects within the system is conserved.

- The combined momentum of the system does not change.
- The momentum lost by Ball 1 is equal to the momentum gained by Ball 2.

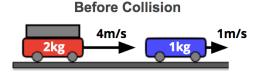

Logical Basis of Momentum Conservation

In a collision between **Object 1** and **Object 2**, the following is true.

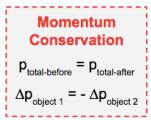

Statement	Symbolic Form	Basis	
The forces between objects are	F ₁ = - F ₂	Newton's	
equal and opposite	F1 = - F2	3 rd Law	
enduring for the same amount	$\Delta \mathbf{t_1} = \Delta \mathbf{t_2}$	Logic	
of time	$\Delta t_1 - \Delta t_2$	Logic	
causing the same impulse on	$F_1 \bullet \Delta t_1 = - F_2 \bullet \Delta t_2$	Moth Logic	
each object	Γ1•Δt1 = - Γ2•Δt2	Math Logic	
resulting in the same	miedy, = meedye	Dhysics Logic	
momentum change	$\mathbf{m}_{1} \bullet \Delta \mathbf{v}_{1} = - \mathbf{m}_{2} \bullet \Delta \mathbf{v}_{2}$	Physics Logic	

The Cart and the Brick Example

A 3-kg cart is in motion at 5 m/s. A 2-kg brick, initially at rest, is dropped onto the moving cart. After the collision, the brick and cart move together with a speed of 3 m/s.



	p Before Coll'n	p After Coll'n	Δр
Cart	3•5 = 15 kg•m/s	3•3 = 9 kg•m/s	-6 kg•m/s
Dropped Brick	2•0 = 0 kg•m/s	3•2 = 6 kg•m/s	+6 kg•m/s
System Total	15 kg•m/s	15 kg•m/s	0 kg•m/s


Red Cart Collides with Blue Cart Example

A 2-kg red cart moving at 4 m/s collides with a 1-kg blue cart moving at 1 m/s. The carts collide, stick together, and continue in motion at the same speed of 3 m/s.

	p Before Coll'n	p After Coll'n	Δр
Red Cart	2•4 = 8 kg•m/s	2•3 = 6 kg•m/s	-2 kg•m/s
Blue Cart	1•1 = 1 kg•m/s	1•3 = 3 kg•m/s	+2 kg•m/s
System Total	9 kg•m/s	9 kg•m/s	0 kg•m/s

