
Thnking Proportionally About Collisions Lesson Notes

The Law of Momentum Conservation:

For any collision or explosion occurring in an isolated system, the total amount of momentum possessed by objects within the system is conserved (i.e., remains unchanged).

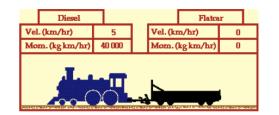
Before Collision: 60 000 kg•m/s + 0 kg• m/s

After Collision: 45 000 kg•m/s + 15 000 kg•m/s

The truck loses momentum. The car gains momentum. But the combined momentum ("system total") remains unchanged. It is **conserved**.

Thinking Proportionally

Requirements:


- 1. Before collision: one object is at rest; the other is moving.
- 2. After collision: both objects move at the same speed.

For total system momentum to be conserved

- If the amount of mass that is moving increases, then the speed at which it moves must decrease.
- The factor by which the mass increases must be equal to the factor by which the speed decreases.

Flat Car-Diesel Collisions - an Example

```
Consider the diesel-flatcar collision: m_{diesel} = 8000 \text{ kg}, m_{flatcar} = 2000 \text{ kg}
```


	Diesel			Flates		ur	
Vel. (km/hr)		4		Vel. (km/hr)		4	
Mom. (kg km/hr)		32 000		Mom. (kg km/hr)		8 000	

- Before the collision, there is 8000-kg (the diesel) of mass moving with a velocity of 5 km/hr.
- After the collision, there is **10 000 kg** (diesel + flatcar) moving at the same speed.
- The amount of mass that is moving has increased by a factor of 5/4.
- To conserve total system momentum, the velocity at which this mass moves will 4/5ths of the original value. This would be equivalent to 4 km/hr.

Fish Catch Example

Consider the hit-and-stick collision of a little fish and a big fish.

Relative Mass			Before- Coll'n	Factor by Which		After Coll'n	
Little Fish	Big Fish	Little + Big Fish	Speed (cm/s)	Mass ↑	Speed ↓	Speed (cm/s)	
m	3•m	4•m	120	x4	÷4	30	
m	4•m	5•m	120	x5	÷5	24	
m	5•m	6•m	120	x6	÷6	20	

Red Cart - Blue Cart Collision

A red cart moving at **60 cm/s** collides with a stationary blue cart. The two carts stick together and move at the same speed after the collision.

Before Collision	After Collision	The amount of mass that is moving ↑ by a factor of	so the speed at which the carts move ↓ by a factor of	so the final speed is
		x2	÷2	30 cm/s
		хЗ	÷3	20 cm/s
		x4	÷4	15 cm/s

... and more ...

	2 2	x1.5	÷1.5	40 cm/s
	= <u>3m</u> <u>m</u>	x1.333	÷1.333	45 cm/s
= 3m 2m	3m 2m	x1.666	÷1.666	36 cm/s