Intensity and the DeciBel Scale Lesson Notes

Learning Outcomes

- What is the relationship between the intensity of sound and distance from the source?
- How does the deciBel system work?

Energy and Amplitude

- As a sound wave travels through air, air particles vibrate about a fixed position.
- Amplitude is the maximum amount of displacement a particle experiences relative to its resting position.
- High amplitude sounds transport more energy than low amplitude sounds. They are perceived as louder sounds.

Intensity, Power, and Distance

Intensity (I) refers to the amount of sound energy that reaches a given surface area per time. Units on intensity are Watts/meter² (abbrev. W/m²).

Power (P) is a property of the sound source.

The energy emitted by a source travels into the surroundings and spreads over a spherical surface area with radius **R**.

Inverse Square Law The intensity of a sound at any given

location is inversely proportional to the square of the distance from the source.

CotationDistanceIntensityA1 m160 unitsB2 m40 units

C3 m17.8 unitsD4 m10 unitsAs R doubles, I becomes 1/4-th the value

As R triples, I becomes 1/9-th the value

As R quadruples, I becomes 1/16-th the value

The deciBel Scale

Sound Source	Intensity (W/m²)	#times more intense than TOH	Bel Rating	deciBel Rating
Threshhold of Hearing	1 x 10 ⁻¹²		0	0
Rustling Leaves	1 x 10 ⁻¹¹	10 ¹	1	10
Whisper	1 x 10 ⁻¹⁰	10 ²	2	20
Normal Conversation	1 x 10 ⁻⁶	10 ⁶	6	60
Busy Street Traffic	1 x 10⁻⁵	10 ⁷	7	70
Vacuum Cleaner	1 x 10 ⁻⁴	10 ⁸	8	80
Rock Concert (1 st Row)	1 x 10 ⁻¹	1011	11	110
Threshhold of Pain	1 x 10 ¹	10 ¹³	13	130
Military Jet Takeoff	1 x 10²	1014	14	140

Thinking in Powers of 10

Example 1: How many times more intense is an 80 dB sound than a 40 dB sound?

 $40 \text{ dB} \Rightarrow 4 \text{ Bel}$ $80 \text{ dB} \Rightarrow 8 \text{ Bel}$

The 80 dB sound is 4 Bels higher ... So 80 dB is 10^4 X more intense.

The deciBel Equation

What do you do when the intensity is something like 6.27×10^{-5} W/m²? How do you find its deciBel rating?

Loudness

- An intense sound is perceived as a loud sound ... but not equally loud to all individuals.
- Loudness is a subjective quality, dependent upon the hearing ability of the observer and the sound's frequency.

Example 2: How many times more intense is an 90 dB sound than a 30 dB sound?

 $30 \text{ dB} \Rightarrow 3 \text{ Bel}$ $90 \text{ dB} \Rightarrow 9 \text{ Bel}$

The 90 dB sound is 6 Bels higher ... So 90 dB is **10⁶ X more intense**.

 $dB = 10 \cdot \log (I / I_{o})$

where I = intensity of sound $I_a = 1.0 \times 10^{-12} \text{ W/m}^2$

6.27 x 10⁻⁵ / 1.0 x 10⁻¹²

 $= 6.27 \times 10^7$

 $\log(6.27 \times 10^7) = 7.80$

10 • 7.80 = **78.0 dB**

Suggestion:

- 1. Determine I/I ratio.
- 2. Determine the log of
- this ratio.

3. Multiple by 10.

130 (estimated) 120 110 100 phon 100 deciBel Rating 90 80 70 60 50 40 30 20 20 10 (threshold) 0 -10 10 100 1000 10k 100k **Frequency (Hz)**