Triboelectric Charging Lesson Notes

Focus Questions:

- What is triboelectric charging and how does it occur?
- How can the results of triboelectric charging be predicted?

What is Triboelectric Charging?

Involves bringing the particles of one object in *close* contact with the particles of a second object, and then separating them from each other.

The Result: The two objects become charged with opposite type of charge.

How Does Triboelectric Charging Work?

- Electrons are transferred from the object that loves them the least to the object that loves them the most.
- The object that gains the es becomes negatively-charged. The object that loses the es becomes positively-charged.

Example: Vinyl balloons love e⁻s more than human hair. When rubbed, e⁻s transfer from hair to balloon. The balloon becomes - and the hair +.

Electron Affinity

Definition: a property of a materials that describes the relative amount of affinity (or love) that its atoms have for electrons.

During triboelectric charging, **e**'s **are transferred** from the material with the least e⁻ affinity (making it +) to the material with the greatest e⁻ affinity (making it -).

Example Question: Glass is rubbed with a silk cloth and the glass becomes +. Which material - glass or silk - has the greatest affinity for e⁻s?

Answer: Silk, because after being rubbed with glass, it was the material that gained e⁻s to become -.

Triboelectric Series

A triboelectric series (shown at right) is a listing of a collection of materials, ranked in order of their electron affinity (their relative love for e⁻s).

For the series at the right, materials ranked higher in this series will become - when rubbed with materials below them.

For instance, **vinyl** (near top) will become - when rubbed with **rabbit fur**.

Most e ⁻	Teflon	
Loving	Vinyl	
	Polyethylene	
	Polyester	
	Acrylic	
	Natural Rubber	
	Wood	
	Cotton	
	Paper	
	Aluminum	
	Silk	
	Wool	
	Glass	
Least e ⁻	Acetate	
Loving	Rabbit Fur	

- 1. Rub Teflon and Rabbit Fur. Which becomes + and which becomes -?
- 2. Rub Vinyl and Paper. Which becomes + and which becomes -?
- Rub Material X with cotton and it becomes +. What charge will X acquire when rubbed with wool?
 a. Positive b. Negative c. Can't tell.

Most e' LovingTeflon VinylPolyethylenePolyethylenePolyesterAcrylicNatural RubberWoodCottonPaperAluminumSilkWoolGlassAcetate			
Loving Vinyl Polyethylene Polyester Acrylic Natural Rubber Wood Cotton Paper Aluminum Silk Wool Glass Least e Acetate	Most e ⁻	Teflon	
Polyester Acrylic Natural Rubber Wood Cotton Paper Aluminum Silk Wool Glass Least e ⁻ Acetate		Vinyl	
Acrylic Natural Rubber Wood Cotton Paper Aluminum Silk Wool Glass Least e Acetate		Polyethylene	
Natural Rubber Wood Cotton Paper Aluminum Silk Wool Glass Least e ⁻ Acetate		Polyester	
Wood Cotton Paper Aluminum Silk Wool Glass Least e ⁻ Acetate		Acrylic	
Cotton Paper Aluminum Silk Wool Glass Least e ⁻ Acetate		Natural Rubber	
Paper Aluminum Silk Wool Glass Least e Acetate		Wood	
Aluminum Silk Wool Glass Least e Acetate		Cotton	
Silk Wool Glass Least e ⁻ Acetate		Paper	
Wool Glass Least e ⁻ Acetate		Aluminum	
Glass Least e ⁻ Acetate		Silk	
Least e Acetate		Wool	
		Glass	
	Least e ⁻	Acetate	
Loving Rabbit Fur	Loving	Rabbit Fur	

Law of Conservation of Charge

During electrostatic processes, the total amount of charge is conserved. In other words:

Charge is neither created nor destroyed, but only transferred from one object to another in the form of electrons.

So when a vinyl balloon is given several vigorous rubs with animal fur, there may be approximately 2 trillion (10¹² electrons).

	Before Rubbing	After Rubbing
Vinyl Balloon	0	-300 nC
Human Hair	0	+300 nC
Total for System	0	0