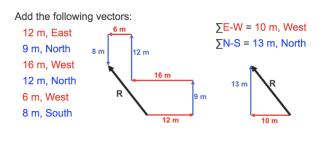
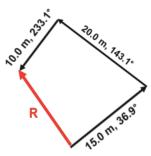
#### Analytical Method of Vector Addition Lesson Notes


#### What is the Analytical Method?

Determining the resultant of two or more non-perpendicular vectors by adding all their xand y-components.

## An Easy Problem Adding Perpendicular Vectors


### versus

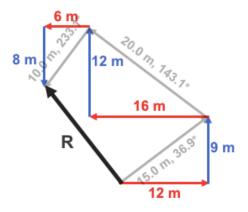
## A Difficult Problem Adding Non-Perpendicular Vectors



Add the following vectors: 15.0 m, 36.9° 20.0 m, 143.1° 10.0 m, 233.1°

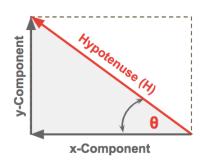
To add non-perpendicular vectors, you must first resolve them into x- and y-components. Then add all the x- and y-components.




# Simplifying a Difficult Problem to Make it an Easy Problem

By resolving all nonperpendicular vectors into right angle components, a difficult problem can be transformed into an easier problem. Replace **15.0 m**, **36.9°** with **12 m**, **East** + **9 m**, **North** 

Replace 20.0 m, 143.1° with 16 m, West + 12 m, North


Replace 10.0 m, 233.1° with 6 m, West + 8 m, South

The **Resultant** is the same!



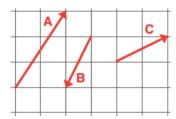
#### **Trigonometric Method of Vector Resolution**:

The **trigonometric method** of vector resolution relies on an understanding of the sine, cosine, and tangent functions.

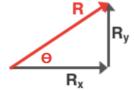


#### **SOH CAH TOA**

Sin  $\theta$  = Opposite/Hypotenuse Cos  $\theta$  = Adjacent/Hypotenuse


Tan  $\theta$  = Opposite/Adjacent

#### **A Visual Example**


$$Add A + B + C$$

Scale:

Each square is 10 m along its edge.



| Vector    | X     | у     |
|-----------|-------|-------|
| A         | +20 m | +30 m |
| В         | -10 m | -20 m |
| С         | +20 m | +10 m |
| Resultant | +30 m | +20 m |



$$R = \sqrt{(R_x^2 + R_y^2)}$$

$$R = \sqrt{(30^2 + 20^2)}$$

$$R = 36 \text{ m}$$

$$\Theta = \tan^{-1}(R_{y}/R_{x}) = \tan^{-1}(20/30) = 34^{\circ}$$
 CCW

#### **Procedure for the Analytical Method of Vector Addition**

Given 2 or more vectors to be added, use this procedure:

- 1. Sketch a vector addition diagram (as a quick estimate).
- 2. Create an x-y table; use trigonometric functions to resolve the given vectors into components.
- 3. Add all components to determine the components of the resultant ( $\mathbf{R}$ ). Sketch the resultant with  $\mathbf{R}_{\mathbf{x}}$  and  $\mathbf{R}_{\mathbf{y}}$  shown.
- 4. Use the Pythagorean theorem to determine the magnitude of the resultant (**R**).
- 5. Use a trigonometric function to determine the direction of the resultant (R).

#### Example 2

Use the 5-step method above to solve the following vector addition problem.

Add the following vectors:

A: 4.50 km, 20.0°

B: 4.20 km, 270.0°

C: 6.00 km, 210.0°

| Vector | x-Component | y-Component |
|--------|-------------|-------------|
| Α      |             |             |
| В      |             |             |
| С      |             |             |
| R      |             |             |