x - and y-Displacement of a Projectiles Lesson Notes

Vertical Displacement of a Projectile

$$
\text { Kinematic Equation: } d=v_{0} \bullet t+1 / 2 \cdot a \cdot t^{2} \Rightarrow d_{y}=v, t+1 / 2 \cdot a_{y} \cdot t^{2}
$$

For some quick, back-of-the-envelope calculations, a value of $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ is often used for the value of the vertical acceleration.

Horizontal Displacement of a Projectile

The horizontal displacement $\left(d_{x}\right)$ depends upon the original horizontal velocity $\left(\mathrm{v}_{\mathrm{ox}}\right)$ and the time (t) of fall.

Consider a ball launched horizontally at $15 \mathrm{~m} / \mathrm{s}$ from the top of an 80-m high cliff.

$t(s)$	$d_{x}(m)$	$d_{y}(m)$
0	0	0
1	15	-5
2	30	-20
3	45	-45
4	60	-80

Trajectory Plot

A ball is launched horizontally at $15 \mathrm{~m} / \mathrm{s}$ from the top of an $80-\mathrm{m}$ high cliff.

The trajectory of a projectile is parabolic in shape because of the vertical acceleration ($\mathrm{d}_{\mathrm{y}} \alpha \mathrm{t}^{2}$) and the constant horizontal velocity ($\left.\mathrm{d}_{\alpha} \propto \mathrm{t}\right)$.

dx Depends on Vox

Consider three horizontal launch velocities for a projectile launched from the top of an 80-m high cliff: $\mathbf{1 0 ~ m} / \mathrm{s}, \mathbf{1 5 ~ m} / \mathrm{s}$ and $\mathbf{2 0 ~ m} / \mathrm{s}$.

The time to fall - 4 seconds - is not affected by the vox value. The horizontal displacement (d_{x}) is affected by the vox value.

Angle-Launched Trajectory

Imagine a ball launched at an angle above the horizontal with $v_{o x}$ of $12 \mathrm{~m} / \mathrm{s}$ and $v_{\text {oy }}$ of $20 \mathrm{~m} / \mathrm{s}$.

$\mathrm{t}(\mathrm{s})$	$\mathrm{d}_{\mathrm{x}}(\mathrm{m})$	$\mathrm{V}_{\mathrm{oy}}{ }^{\bullet} \mathrm{t}(\mathrm{m})$	$1 / 2^{\bullet}(-10) \cdot \mathrm{t}^{2}(\mathrm{~m})$	$\mathrm{dy}(\mathrm{m})$
0	0	0	0	0
1	12	20	-5	+15
2	24	40	-20	+20
3	36	60	-45	+15
4	48	80	-80	0
5	60	100	-125	-25
6	72	120	-180	-60

