Vector Resolution
 Lesson Notes

What is a Component?

A vector drawn at an angle can be thought of as having two parts - here, a north and an east part. These parts are called vector components. A vector's components describe the effect of a vector in a given direction. The components of a vector can be determined as perpendicular projections of the vector onto the x - and the y-axis.

Vector Resolution:

The process of determining the mathematical value and direction of a vector's components.

Two Methods of Vector Resolution

1. Graphical Method
2. Trigonometric Method

Graphical Method of Vector Resolution:

1. Select a scale and draw the vector to scale in the appropriate direction.
2. Extend x - and y-axes from the tail of the vector to the entire length of the vector and beyond.
3. From the arrowhead of the vector, construct perpendicular projections to the x - and the y -axes.
4. Draw the x-component from the tail of the vector to the intersection of the perpendicular projection
 with the x -axis. Label this component as A_{x}.
5. Draw the y-component from the tail of the vector to the intersection of the perpendicular projection with the y-axis. Label this component as A_{y}.
6. Measure the length of the two components and use the scale to determine the magnitude of the components.

Trigonometric Method of Vector Resolution:
The trigonometric method of vector resolution relies on an understanding of the sine, cosine, and tangent functions.

Example 1
Determine the components of the vector ...

$$
\mathrm{F}=215 \mathrm{~N}, 128^{\circ} \mathrm{CCW}
$$

Example 2

Determine the components of the vector ...

$$
\mathrm{F}=162 \mathrm{~N}, 254^{\circ} \mathrm{CCW}
$$

Vector Resolution and the CCW Convention

A shortcut for calculating the components of \mathbf{A} :

$$
A_{x}=A \cdot \cos \theta \quad A_{y}=A \cdot \sin \Theta
$$

where \mathbf{A} is the magnitude and $\boldsymbol{\theta}$ is the CCW from East direction of vector \mathbf{A} (a must).

Sign Conventions

When using the CCW from East convention to calculate a vector's components, a + or - sign will indicate the direction of the vector.

$\mathrm{x}:-$ (West) $\mathrm{x}:+$ (East) $y:+$ (North) $y:+$ (North)	
w: - (West)	$x:+$ (East)
$y:-$ (South)	$y:-$ (South)

