The Physics of Power Lesson Notes

Learning Outcomes

- How are power and work different than one another?
- How do you analyze physical situations to determine the power delivered by an object?

Constrasting Work and Power

- Work pertains to a force causing a displacement in order to change the energy of a system.
- Power: how fast the work gets done. It has a time component.
- To illustrate: Consider three paths - A, B and C-leading from the base of a hill to the summit. Each has a different angle and requires a different time. Which requires the most work? ... the most power?

Same work for each.
Most power: A
Least power: B

Defining Power

Power is the rate at which work is done.

$$
\text { Power }=\text { Work/Time } \quad \text { or } \quad \mathrm{P}=\mathrm{W} / \mathrm{t}
$$

Two identical jobs require the same amount of work. But if one is to be done in less time, then it requires a greater power.
Unit: Watt (abbrev. W) 1 Watt = 1 Joule/second

Power Ratings

Machines are made to do work upon objects. Most machines are given a power rating to describe how fast they do the work. Power ratings are often given in the unit or horsepower (abbrev. hp).

$$
1 \mathrm{hp}=746 \text { Watt }
$$

Car A: 150 hp Engine

Goes $0 \mathrm{mi} / \mathrm{hr}$ to 60 $\mathrm{mi} / \mathrm{hr}$ in 15 seconds.

Car B: 750 hp Engine

Goes $0 \mathrm{mi} / \mathrm{hr}$ to 60 $\mathrm{mi} / \mathrm{hr}$ in 3 seconds.

Power-Force-Velocity Relationship

$$
\begin{aligned}
& \text { Power }=\frac{\text { Work }}{\text { time }}=\frac{\mathrm{F} \cdot \mathrm{~d}}{\mathrm{~d},}=\mathrm{F} \cdot \mathrm{v} \\
& \text { Power }=\text { Force } \cdot \text { Velocity }
\end{aligned}
$$

$$
\begin{gathered}
\text { Remember } \\
v=d / t \\
v=\text { velocity } \\
d=\text { displacement } \\
t=\text { time }
\end{gathered}
$$

Personal Power Lab

A common lab in a Physics course.

Run up a flight of stairs and determine your power rating.

Typical data and calculations are shown.

Lab \#22:	
Purpose:	To dersonal Power Lab
flight of stairs.	

Show your solution to each of the following problems.

Power Calculations - Example 1

When doing a chin-up, a 42 -kg student lifts her body upward a distance of 0.25 m in 1.3 seconds. Determine the power delivered by the student's biceps.

Power Calculations - Example 2

During a football workout, the line coach stands on a training sled (combined mass $=245$ kg) as three lineman push the sled across the field ($\mu=0.825$) at a constant speed of 1.60 m / s. Determine the combined power of the lineman.

