The Physics of Power Lesson Notes

Learning Outcomes

- How are power and work different than one another?
- How do you analyze physical situations to determine the power delivered by an object?

Constrasting Work and Power

- Work pertains to a force causing a displacement in order to change the energy of a system.
- Power: how fast the work gets done. It has a time component.
- To illustrate: Consider three paths A, B and C leading from the base of a hill to the summit. Each has a different angle and requires a different time. Which requires the most work? ... the most power?

Same work for each. Most power: A Least power: B

Defining Power

Power is the rate at which work is done.

Power = Work/Time or

P = W / t

Two identical jobs require the same amount of work. But if one is to be done in less time, then it requires a greater power.

Unit: Watt (abbrev. W) 1 Watt = 1 Joule/second

Power Ratings

Machines are made to do work upon objects. Most machines are given a **power rating** to describe how fast they do the work. Power ratings are often given in the unit or **horsepower** (abbrev. **hp**).

1 hp = 746 Watt

Power-Force-Velocity Relationship

Car A: 150 hp Engine

Goes 0 mi/hr to 60 mi/hr in 15 seconds. Car B: 750 hp Engine

Goes 0 mi/hr to 60 mi/hr in 3 seconds.

Power = Force • Velocity

Remember
v = d / t
v = velocity
d = displacement
t = time

Personal Power Lab

A common lab in a Physics course.

Run up a flight of stairs and determine your power rating.

Typical data and calculations are shown.

Lab #22	2: Personal Power Lab
Purpose:	To determine my running power in ascending of flight of stairs.
Data:	mass = 82 kg
	height = 1.8 m
	tíme = 1.03 s
Calc'ns:	Force = m·g = (82 kg)·(9.8 N/kg) = 803.6 N
	Work = $F \cdot d \cdot \cos \Theta = (803.6 \text{ N}) \cdot (1.8 \text{ m}) \cdot \cos \Theta$
	Work = 1446.46
	Power = W/t = (1446.46)/(1.03 s)
	Power = $1400 W (1404.34 W) = > 1.9 hp$

Show your solution to each of the following problems.

Power Calculations - Example 1

When doing a chin-up, a 42-kg student lifts her body upward a distance of 0.25 m in 1.3 seconds. Determine the power delivered by the student's biceps.

Power Calculations - Example 2

During a football workout, the line coach stands on a training sled (combined mass = 245 kg) as three lineman push the sled across the field (μ =0.825) at a constant speed of 1.60 m/s. Determine the combined power of the lineman.