Describing Motion with Velocity-Time Graphs

Read from Lesson 4 of the 1-D Kinematics chapter at The Physics Classroom:

http://www.physicsclassroom.com/Class/1DKin/U1L4a.html http://www.physicsclassroom.com/Class/1DKin/U1L4b.html http://www.physicsclassroom.com/Class/1DKin/U1L4c.html http://www.physicsclassroom.com/Class/1DKin/U1L4d.html

MOP Connection: Kinematic Graphing: sublevels 5-8 (and some of sublevels 9-11)

Motion can be described using words, diagrams, numerical information, equations, and graphs. Describing motion with graphs involves representing how a quantity such as the object's velocity = changes with respect to the time. The key to using velocity-time graphs is knowing that the slope of a velocity-time graph represents the object's acceleration and the area represents the displacement.

Review:

- 1. Categorize the following motions as being either examples of + or acceleration.
 - a. Moving in the + direction and speeding up (getting faster)
 - b. Moving in the + direction and slowing down (getting slower)
 - c. Moving in the direction and speeding up (getting faster)
 - d. Moving in the direction and slowing down (getting slower)

Interpreting Velocity-Graphs

2. On the graphs below, draw two lines/curves to represent the given verbal descriptions; label the lines/curves as A or B.

3. Use the velocity-time graphs below to determine the acceleration. **PSYW**

4. The area under the line of a velocity-time graph can be calculated using simple rectangle and triangle equations. The graphs below are examples:

Find the displacement of the objects represented by the following velocity-time graphs.

5. For the following pos-time graphs, determine the corresponding shape of the vel-time graph.

