Resonance and Guitar Strings

Read from Lesson 5 of the Sound and Music chapter at The Physics Classroom:
http://www.physicsclassroom.com/Class/sound/u1115a.html
http://www.physicsclassroom.com/Class/sound/u1115b.html

MOP Connection: \quad Sound and Music: sublevels 6 and 7

Review

1. Standing wave patterns consist of nodes and antinodes. The positions along a medium that appear to be stationary are known as \qquad . They are points of no displacement. The positions along a medium that are undergoing rapid motion between a maximum positive and maximum negative displacement are known as \qquad . They are the opposite of the points of no displacement.
2. Use the diagram below to compare the distance between two adjacent nodes on a standing wave pattern and the wavelength of a wave. Write a sentence comparing these two distances.

Resonance in Strings:

3. Draw the standing wave patterns for the first five harmonics and complete the equations.

Harmonic \#	Standing Wave Pattern	λ---> L	L ---> λ
1		$\mathrm{L}=\ldots$	$\lambda=\ldots \mathrm{L}$
2		$L=\ldots \lambda$	$\lambda=\ldots \mathrm{L}$
3		$L=\ldots \lambda$	$\lambda=\ldots \mathrm{L}$
4		$L=\ldots \lambda$	$\lambda=\ldots \mathrm{L}$
5		$L=\ldots \lambda$	$\lambda=\ldots \mathrm{L}$

Sound and Music

4. Determine the wavelength of the ...

a. ... wave in this 1.3-meter long string.	b. ... wave in this $85-\mathrm{cm}$ long string.
c. ... first harmonic wave pattern for a 78.5cm long guitar string.	d. ... fifth harmonic wave pattern for a 1.05m long guitar string.

Use the wave equation and your standing wave patterns to solve the following problems. PSYW
5. A guitar string with a length of 80.0 cm is plucked. The speed of a wave in the string is $400 \mathrm{~m} / \mathrm{sec}$. Calculate the frequency of the first harmonic. PSYW
6. Calculate the frequency of the second and third harmonic for the string in question \#5. PSYW
7. A pitch of Middle D (first harmonic $=294 \mathrm{~Hz}$) is sounded out by a vibrating guitar string. The length of the string is 70.0 cm . Calculate the speed of the standing wave in the guitar string. PSYW
8. A frequency of the first harmonic is 587 Hz (pitch of D_{5}) is sounded out by a vibrating guitar string. The speed of the wave is $600 . \mathrm{m} / \mathrm{sec}$. Find the length of the string. PSYW
9. A rope is vibrating in such a manner that three equal-length segments are found to be vibrating up and down with 321 complete cycles in 20.0 seconds. Waves travel at speeds of $26.4 \mathrm{~m} / \mathrm{s}$ in the rope. What is the length of the rope? PSYW

