Skip to Content Go to sign in Skip to Primary Navigation Skip to Secondary Navigation Skip to Page Navigation Skip to Header Navigation Skip to Footer Navigation Read more about accessability options and our navigation

Physics Classroom is making strides to make our site accessible to everyone. Our site contains 6 navigation areas. The Primary, Secondary, and Page Level navigations have a screen reader version of their nav structure that allows using the left and right keys to navigate sibling navigation items, and up or down keys to navigate parent or child navigation items. The others can be navigated using tabs. The Primary Navigation handles the first 2 levels of site pages. The Secondary (which is not always available) handles the 3rd and 4th level of structure. The Page level navigation allows you to navigate the current page's headings quickly. The Header Navigation contains the Light/Dark Mode toggle, Search, Notifications and account login. The Breadcrumb Navigation contains the breadcrumb of the current page. If the current page has a breadcrumb, you can get to it by skipping to the content and tabbing in reverse (shift plus tab). The Footer Navigation contains links such as Privacy, Contact, about and terms. Some resources contain an Audio Player that can be activated by holding down the T key for 3 seconds, and then using K to pause and resume. While not every area of Physics Classroom is usable purely from keyboard and screen reader, we are committed to continue work on making this possible. If you have questions or need additional help, please use this link to contact us.

Return to screen reader navigation

Mission VP10 Displacement and Time for a Projectile

 The Question

A projectile of mass "m" is launched horizontally from an elevated height of "h" meters with an initial speed of "v" m/s. The time for the horizontally-launched projectile to fall to the ground below is dependent upon ...

 Formula Fix

The distance fallen (dy) by an object after a certain time (t) can be related to the vertical acceleration (ay) and the original vertical velocity (voy) using the kinematic equation:
 
dy= voy• t + 0.5 • ay• t2
 
For horizontally-launched projectiles, the original vertical velocity is 0 m/s. Thus the equation can be simplified to
 
dy= voy• t + 0.5 • ay• t2

 Think About It

The vertical motion of a projectile is independent of the horizontal motion and dependent solely upon vertical information. The time to fall to the ground is dependent upon vertical parameters of motion such as vertical velocity, vertical acceleration and vertical distance of fall. The Formula Frenzy section expresses the interdependency of these variables in the form of an equation. Use the formula to guide your reasoning concerning the answer to this question. (And don't ignore the A Very Fine Detail section.)

 A Very Fine Detail

The projectile described in this question is "launched horizontally." The significance of these two small words is that the initial vertical velocity is 0 m/s for a horizontally launched projectile. The initial velocity of the such a projectile is entirely horizontal. Thus, the initial velocity is the initial horizontal velocity; it should not be confused with the vertical velocity.

Return to Screen Reader Navigation