Use principles of component addition of vectors with the Pythagorean theorem and SOH CAH TOA to solve the following vector addition problems.
A hiker takes a trip which consists of two segments. Path A is 43.3 km long heading 58.6 degrees N of East. Path B is 93.5 km long in a direction 23.2 degrees N of W. Resolve each displacement vector into its components; consider using a table like the one below to orgnanize your results. Use - signs for a westward or southward direction. Then sum the columns to determine the resultant's x- and y-components. Finally determine the magnitude and the direction of the resultant.
Ax
Vector A in x-direction
km
Ay
Vector A in y-direction
Bx
Vector B in x-direction
By
Vector B in y-direction
Rx
Resultant vector in x-dir
Ry
Resultant vector in y-dir
Resultant's magnitude
Resultant's direction
° CCW from East
A hiker takes a trip which consists of three segments. Path A is 11.1 km long heading 58.8 degrees North of East. Path B is 10.4 km long in a direction due East. Path C is 3.3 km long heading 47.3 degrees East of South.
1) Resolve each displacement vector into its components; consider using a table like the one below to orgnanize your results. Use - signs for a westward or southward direction.
2) Then sum the columns to determine the resultant's x- and y-components.
3) Finally determine the magnitude and the direction of the resultant.
Cx
Vector C in x-direction
Cy
Vector C in y-direction
Resultant Vector in y-dir