Explore the difference between constant speed and accelerated motion with the Apply the Brakes simulation.

Visit The Physics Classroom's Flickr Galleries and take a visual overview of 1D Kinematics.

PhET Simulation: The Moving Man

Explore the relationship between motion graphs and motion with PHET's The Moving Man simulation.

Walter Fendt Physics Applets: Motion with Constant Acceleration

Experiment with position-time (and velocity-time) plots with this interactive Java applet.

This Apply the Brakes simulation provides multiple representations of constant speed and accelerated motion.

Learning requires action. Give your students this sense-making activity from The Curriculum Corner.

This EJS simulation from Open Source Physics (OSP) contrasts the graphs for constant speed and accelerated motion.

PhET Simulation: The Moving Man

Explore the relationship between graphs and motion with The Moving Man simulation from PHET.

Graph That Motion from the Shockwave Studios is an excellent accompanying activity to this page.

A collection of ""guided construction"" activities that introduces the concept of kinematic graphing in an interactive manner.

Looking for a lab that coordinates with this page? Try the Position-Time Graphs Lab at The Laboratory. Requires motion detectors.

Need ideas? Explore The Physics Front's treasure box of catalogued resources on kinematic graphing.

Walter Fendt Physics Applets: Motion with Constant Acceleration

This interactive simulation will help students relate the shape of v-t (and p-t) plots to the actual motion.

1-D Kinematics - Lesson 3 - Describing Motion with Position vs. Time Graphs

Our study of 1-dimensional kinematics has been concerned with the multiple means by which the motion of objects can be represented. Such means include the use of words, the use of diagrams, the use of numbers, the use of equations, and the use of graphs. Lesson 3 focuses on the use of position vs. time graphs to describe motion. As we will learn, the specific features of the motion of objects are demonstrated by the shape and the slope of the lines on a position vs. time graph. The first part of this lesson involves a study of the relationship between the shape of a p-t graph and the motion of the object.

To begin, consider a car moving with a constant, rightward (+) velocity - say of +10 m/s.

If the position-time data for such a car were graphed, then the resulting graph would look like the graph at the right. Note that a motion described as a constant, positive velocity results in a line of constant and positive slope when plotted as a position-time graph.

Now consider a car moving with a rightward (+), changing velocity - that is, a car that is moving rightward but speeding up or *accelerating*.

If the position-time data for such a car were graphed, then the resulting graph would look like the graph at the right. Note that a motion described as a changing, positive velocity results in a line of changing and positive slope when plotted as a position-time graph.

The position vs. time graphs for the two types of motion - constant velocity and changing velocity (acceleration) - are depicted as follows.

Constant Velocity Positive Velocity |
Positive Velocity Changing Velocity (acceleration) |
---|---|

The shapes of the position versus time graphs for these two basic types of motion - constant velocity motion and accelerated motion (i.e., changing velocity) - reveal an important principle. The principle is that the slope of the line on a position-time graph reveals useful information about the velocity of the object. It is often said, "As the slope goes, so goes the velocity." Whatever characteristics the velocity has, the slope will exhibit the same (and vice versa). If the velocity is constant, then the slope is constant (i.e., a straight line). If the velocity is changing, then the slope is changing (i.e., a curved line). If the velocity is positive, then the slope is positive (i.e., moving upwards and to the right). This very principle can be extended to any motion conceivable.

Consider the graphs below as example applications of this principle concerning the slope of the line on a position versus time graph. The graph on the left is representative of an object that is moving with a positive velocity (as denoted by the positive slope), a constant velocity (as denoted by the constant slope) and a small velocity (as denoted by the small slope). The graph on the right has similar features - there is a constant, positive velocity (as denoted by the constant, positive slope). However, the slope of the graph on the right is larger than that on the left. This larger slope is indicative of a larger velocity. The object represented by the graph on the right is traveling faster than the object represented by the graph on the left. The principle of slope can be used to extract relevant motion characteristics from a position vs. time graph. As the slope goes, so goes the velocity.

Slow, Rightward(+) Constant Velocity |
Fast, Rightward(+) Constant Velocity |
---|---|

Consider the graphs below as another application of this principle of slope. The graph on the left is representative of an object that is moving with a negative velocity (as denoted by the negative slope), a constant velocity (as denoted by the constant slope) and a small velocity (as denoted by the small slope). The graph on the right has similar features - there is a constant, negative velocity (as denoted by the constant, negative slope). However, the slope of the graph on the right is larger than that on the left. Once more, this larger slope is indicative of a larger velocity. The object represented by the graph on the right is traveling faster than the object represented by the graph on the left.

Slow, Leftward(-) Constant Velocity |
Fast, Leftward(-) Constant Velocity |
---|---|

As a final application of this principle of slope, consider the two graphs below. Both graphs show plotted points forming a curved line. Curved lines have changing slope; they may start with a very small slope and begin curving sharply (either upwards or downwards) towards a large slope. In either case, the curved line of changing slope is a sign of accelerated motion (i.e., changing velocity). Applying the principle of slope to the graph on the left, one would conclude that the object depicted by the graph is moving with a negative velocity (since the slope is negative ). Furthermore, the object is starting with a small velocity (the slope starts out with a small slope) and finishes with a large velocity (the slope becomes large). That would mean that this object is moving in the negative direction and speeding up (the small velocity turns into a larger velocity). This is an example of negative acceleration - moving in the negative direction and speeding up. The graph on the right also depicts an object with negative velocity (since there is a negative slope). The object begins with a high velocity (the slope is initially large) and finishes with a small velocity (since the slope becomes smaller). So this object is moving in the negative direction and slowing down. This is an example of positive acceleration.

Negative (-) Velocity Slow to Fast |
Leftward (-) Velocity Fast to Slow |
---|---|

The principle of slope is an incredibly useful principle for extracting relevant information about the motion of objects as described by their position vs. time graph. Once you've practiced the principle a few times, it becomes a very natural means of analyzing position-time graphs.

Use the principle of slope to describe the motion of the objects depicted by the two plots below. In your description, be sure to include such information as the direction of the velocity vector (i.e., positive or negative), whether there is a constant velocity or an acceleration, and whether the object is moving slow, fast, from slow to fast or from fast to slow. Be complete in your description.

Next Section:

Jump To Next Lesson:

Physics Tutorial » 1-D Kinematics » Lesson 3 - Describing Motion with Position vs. Time Graphs » The Meaning of Shape for a p-t Graph